Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:50:21.085Z Has data issue: false hasContentIssue false

A ‘Building Block’ Approach To Mixed-Colloid Systems Through Electrostatic Self-Organization

Published online by Cambridge University Press:  17 March 2011

Trent H. Galow
Affiliation:
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
Andrew K. Boal
Affiliation:
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
Get access

Abstract

We have developed a ‘building block’ approach to electrostatically-mediated construction of modular self-assembled colloid-colloid ensembles. Our strategy involves functionalization of one type of colloidal building block with a primary amine, and a counterpart building block with a carboxylic acid derivative (Scheme 1). By combining the two systems, acid-base chemistry followed by immediate charge-pairing resulted in the spontaneous formation of electrostatically-bound mixed-colloid constructs. The shape and size of these ensembles was controlled via variation of particle size for the two components and their stoichiometries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Boal, A. K., Rotello, V. M. J. Am. Chem. Soc. 121, 4914 (1999). M. A. C. Templeton, D. E. Cliffel, R. W. Murray J. Am. Chem. Soc. 121, 7081 (1999).Google Scholar
2. Korgel, B. A., Fitzmaurice, D. Adv. Mater. 10 (9), 661 (1998). J. Schmitt, P. Machtle, D. Eck, H. Mohwald, C. A. Helm Langmuir 15, 3256 (1999).Google Scholar
3. Cassagneau, T., Fendler, J. H., Mallouk, T. E. Langmuir, ASAP Article.Google Scholar
4. Prozorov, T., Prozorov, R., Gedanken, A. Adv. Mater. 10 (18), 1529 (1998). F. Caruso, A. S. Susha, M. Giersig, H. Möhwald Adv. Mater. 11 (11), 950 (1999).Google Scholar
5. Loweth, C. J., Caldwell, W. B., Peng, X. G., Alivisatos, A. P., Schultz, P. G. Angew. Chem. Int. Ed. 38, 1808 (1999). A. P. Alivisatos, K. P. Johnsson, X. G. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, P. G. Schultz Nature, 382, 607 (1996).Google Scholar
6. Jiang, P., Cizeron, J., Bertone, J. F., Colvin, V. L., J. Am. Chem. Soc. 121, 7957 (1999).Google Scholar
7. Feldheim, D. L., Grabar, K. C., Natan, M. J., Mallouk, T. E. J. Am. Chem. Soc. 118, 7640 (1996). S. M. Marinakos, J. P. Novak, L. C. Brosseau III, A. B. House, E. M. Edeki, J. C. Feldhaus, D. L. Feldheim J. Am. Chem. Soc. 121, 8518 (1999).Google Scholar
8. Chechik, V., Crooks, R. M. Langmuir 121, 6364 (1999). M. Zhao, L. Sun, R. M. Crooks J. Am. Chem. Soc. 120, 4877 (1998).Google Scholar
9. Barathi, S., Lev, O. Chem. Commun. 2303 (1997).T. Ung, L. M. Liz-Marzán, P. Mulvaney Langmuir 14, 3740 (1998).Google Scholar
10. Russo, P. S., Fong, B. Langmuir, 15, 4421 (1999).Google Scholar
11. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., Whyman, R. Chem. Commun. 801 (1994). R. S. Ingram, M. J. Hostetler, R. W. Murray J. Am. Chem. Soc. 119, 9175 (1997).Google Scholar
12. A 1:1 Au 1:SiO2 2 is equivalent to 1 mL 1 mg/mL Au 1 colloid solution added to 1 mL 1 mg/mL SiO2 2 colloid solution.Google Scholar
13. Freeman, R. G., Grabar, K. C., Allison, K. J., Bright, R. M., Davis, J. A., Guthrie, A. P., Hommer, M. B., Jackson, M. A., Smith, P. C., Walter, D. G., Natan, M. J. Science 267, 1629 (1995).Google Scholar
14. Oldenburg, S. J., Averitt, R. D., Westcott, S. L., Halas, N. J. Chem. Phys. Lett. 288, 243 (1998).Google Scholar