Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:33:37.598Z Has data issue: false hasContentIssue false

Broad-Band Dielectric Spectroscopy of Liquid Crystals Confined in Random and Cylindrical Pores

Published online by Cambridge University Press:  10 February 2011

G.P. Sinha
Affiliation:
Department of Physics and Materials Research Center, PO BOX 23343, University of Puerto Rico, San Juan, PR 00931–3343, USA
F.M. Aliev
Affiliation:
Department of Physics and Materials Research Center, PO BOX 23343, University of Puerto Rico, San Juan, PR 00931–3343, USA
Get access

Abstract

Using dielectric spectroscopy in the frequency range 0.1 Hz-1.5 GHz, we investigated the influence of confinement on the dynamic properties of polar nematic liquid crystals (LC) dispersed in porous matrices with randomly oriented, interconnected pores as well as in parallel cylindrical pores with different, pores sizes. The confinement has a strong influence on the dielectric properties of LC which resulted in the appearance of a low frequency relaxational process (f ≤ 10 KHz) absent in bulk and a strong modification of modes due to the molecular rotation around short axis and librational motion. The differences between bulk and confined behavior are: (a) - the dielectrically active modes in confined LC are not frozen even at temperatures about 20 degrees below the bulk crystallization temperature; (b) - in the temperature range corresponding to the anisotropie phase in pores, lnτ, where τ is the relaxation time corresponding to the molecular rotation around short axis, is not a linear function of 1/T and there is an evidence for smectic type order formation at sufficiently low T; (c) - the retardation factor g = τ/τis is ≃ 1.5, where as the typical value of g in bulk nematic liquid crystals is ≃ 4; (d) - smooth and small changes in T at phase transition in pores suggest that the “isotropie” phase of LC in pores is not bulk like isotropie phase with complete disorder in molecular orientations, and some degree of orientation order still persists.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Molecular Dynamics in Restricted Geometries, ed. by Klafter, J. and Drake, J.M. (Wiley, New York, 1989).Google Scholar
2. Crawford, G.P. and Zumer, S., Liquid crystals in complex geometries, Taylor & Francis, London, 1996).Google Scholar
3. Hilfer, R., Phys. Rev. B 44, p. 60 (1991).Google Scholar
4. Aliev, F.M., Breganov, M.N., Sov. Phys. JETP 68, p. 70 (1989).Google Scholar
5. Schuller, J., Mel'nichenko, Yu.B., Richert, R., and Fischer, E.W., Phys. Rev. Lett. 73, p. 2224 (1994).Google Scholar
6. Arndt, M. and Kremer, F. in: Dynamics in Small Confining Systems II, edited by Drake, J.M., Klafter, J., Kopelman, R., Troian, S.M., (Mater. Res. Soc. Proc. 363, Pittsburgh, PA 1995), pp. 259263.Google Scholar
7. Mel'nichenko, Yu., Schuller, J., Richert, R., Ewen, B. and Loong, C.-K., J. Chem. Phys. 103, p. 2016 (1995).Google Scholar
8. Aliev, F.M. and Sinha, G.P. in: Electrically based Microstructural Characterization, edited by Gerhardt, R.A., Taylor, S.R., and Garboczi, E.J. (Mater. Res. Soc. Proc. 411, Pittsburgh, PA 1996), pp. 413418.Google Scholar
9. Rozanski, S.R., Stanarius, R., Groothues, H., and Kremer, F., Liquid Crystals 20, p. 59 (1996).Google Scholar
10. Cummins, P.G., Danmur, D.A., and Laidler, D.A., MCLC 30, p. 109 (1975).Google Scholar
11. Lippens, D., Parneix, J.P., and Chapoton, A., J. de Phys. 38, p. 1465 (1977).Google Scholar
12. Wacrenier, J.M., Druon, C., and Lippens, D., Molec. Phys. 43, p. 97 (1981).Google Scholar
13. Bose, T.K., Chahine, R., Merabet, M., and Thoen, J., J. de Phys. 45, p. 11329 (1984).Google Scholar
14. Scaife, B.K.P., Principles of Dielectrics, (Clarendon Press, Oxford, 1989).Google Scholar