Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:22:53.767Z Has data issue: false hasContentIssue false

Brazing Process to Repair Wide Gap Cracks of Inconel 738 Superalloy Components

Published online by Cambridge University Press:  01 February 2011

Isidro Guzmán
Affiliation:
Dirección de Ingeniería de Materiales y Manufactura, COMIMSA, Saltillo Coahuila C.P. 25290
Alejandro Garza
Affiliation:
Dirección de Ingeniería de Materiales y Manufactura, COMIMSA, Saltillo Coahuila C.P. 25290
Felipe García
Affiliation:
Dirección de Ingeniería de Materiales y Manufactura, COMIMSA, Saltillo Coahuila C.P. 25290
Jesús Castillo
Affiliation:
Dirección de Ingeniería de Materiales y Manufactura, COMIMSA, Saltillo Coahuila C.P. 25290
Get access

Abstract

Brazing process is a cost effective technique to repair wide gap cracks in turbine components made from difficult to weld nickel base superalloys. In this process boron and silicon are used as melting point depressants, however, form hard and brittle intermetallic compounds with nickel (eutectic phases) which are detrimental to the mechanical properties of brazed joints. In this paper the effect of brazing parameters such as temperature and time on final microstructure of brazed joint of nickel base superalloy Inconel 738 using a commercial filler metal alloy (Ni-11Cr-3.5Si-2.25B-3.5Fe) was investigated. The microstructure of the joint layer was characterized by optical and scanning electron microscopy; chemical composition was carried out by energy dispersive X-ray spectrometry (EDS) microanalysis and microhardness testing. The results showed that the formation of eutectic microconstituents, within the joint regions, was significantly influenced by the brazing parameters and gap size, also that formation of eutectic constituents decreased by allowing a sufficient amount of time for a complete isothermal solidification to take place at the brazing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mattheij, J.H.G., Mater. Sci. Technol. 1, 608 (1985).Google Scholar
2. Duvall, S.D., Owczarski, W.A., Weld. J. 46, 423 (1967).Google Scholar
3. Matthew, J. and Stephen, J. Superalloys. A Technical Guide. ASM Internacional. Second edition. (2002).Google Scholar
4. Johnson, R., Baron, M. and Livesey, N.J., Third International Brazing and Soldering Conference (BABS), Paper 21, 1979.Google Scholar
5. Tung, , Lim, , and Lai, , Scripta Materialia. 34, 763 (1996).Google Scholar
6. Lugsscheider, E., Schmoor, H., Eritt, U. Brazing, High Temperature Brazing and Diffusion Welding, Deutscher Verlag fur Schweisstechnik GmbH, Germany, 259261 (1995).Google Scholar
7. Duvall, D. S., Owczarski, W. A and Paulonis, D. F., Welding J. 53, 203 (1974).Google Scholar
8. Pouranvari, M., Ekrami, A., Kokabi, A.H., J. Alloys Compd. 461, 641 (2008).Google Scholar
9. Ojo, O.A., Richards, N.L., Charturvedi, M.C., Sci. Technol. Weld. Joining 9, 209 (2004).Google Scholar
10. Ohsasa, K., Shinmura, T., Narita, T., J. Phase Equilib. 20, 199 (1999).Google Scholar
11. Rosenthal, R., West, D.R.F., Mater. Sci. Technol. 15, 1387 (1999).Google Scholar
12. Gale, W.F., Wallach, E.R., Metall. Trans., A22, 2451 (1991).Google Scholar
13. Eng, R.D., Ryan, E.J. and Doyle, J.R., Welding Journal 56, 15 (1977).Google Scholar
14. Haatkens, M.H., SAB Technical Paper Series, l-15, Oct. 1982.Google Scholar
15. Kelly, T.J., Welding Journal 61, 317 (1982).Google Scholar
16. Chasteen, J. W. and Metzger, G.E., Welding Journal 58, 11l (1979).Google Scholar
17. van Esch, Hans and Marijnissen, G., Turbomachinery International 9, 29 (1986).Google Scholar
18. Lugscheider, E. and Schittny, Th., Brazing and Soldering 14, 27 (1988).Google Scholar
19. Gove, K. G., Metals and Materials 5, 341 (1989).Google Scholar