Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:37:27.606Z Has data issue: false hasContentIssue false

Bound Exciton Energies, Biaxial Strains, and Defect Microstructures in GaN/AlN/6H-SiC(0001) Heterostructures

Published online by Cambridge University Press:  10 February 2011

W. G. Perry
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695–7907
T. Zheleva
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695–7907
K. J. Linthicum
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695–7907
M. D. Bremser
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695–7907
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695–7907
W. Shan
Affiliation:
Center for Laser Research, Oklahoma State University, Stillwater, OK 74078
J. J. Song
Affiliation:
Center for Laser Research, Oklahoma State University, Stillwater, OK 74078
Get access

Abstract

Biaxial strains resulting from mismatches in thermal expansion coefficients and lattice parameters in 22 GaN films grown on A1N buffer layers previously deposited on vicinal and on-axis 6H-SiC(0001) substrates were measured via changes in the c-axis lattice parameter (c). Six of the films were in compression, indicating the residual strain due to lattice mismatch was not relieved. A Poisson's ratio of v=0.18 was calculated. The bound exciton energy (EBx) was a linear function of these strains. The shift in EBx with film stress was 23 meV/GPa. The role of the SiC off-axis tilt was investigated for GaN films grown concurrently on the vicinal and on-axis 6H-SiC substrates. Marked variations in EBx and c were observed, with a maximum shift of ΔEBx = 15 meV and Δc = 0.0042 Å. Threading dislocations densities of ~1010/cm2 and ~108/cm2 were determined for GaN films grown on vicinal and on-axis SiC, respectively. A 0.9% residual compressive strain at the GaN/AIN interface was observed by high resolution transmission electron microscopy (HRTEM). It is proposed that the on-axis SiC substrate does not offer a sufficient density of steps for defect formation to relieve the lattice mismatch between GaN and A1N and A1N and SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Weeks, T. W., Bremser, M. D., Ailey, K. S., Carlson, E., Perry, W. G., Piner, E. L., El-Masry, N. A., and Davis, J. M. R. R. F., J. Mater. Res. 11, 1011 (1996).Google Scholar
2 Tanaka, S., PhD Dissertation, North Carolina State University, 1993.Google Scholar
3 Buyanova, I. A., Bergman, J. P., Monemar, B., Amano, H., and Akasaki, I., Appl. Phys. Lett. 69, 1255 (1996).Google Scholar
4 Ning, X. J., Cein, F. R., Pirouz, P., Yang, J. W., and Khan, M. A., J. Mater. Res. 11, 580 (1996).Google Scholar
5 Monemar, B., Phys. Rev. B 10, 676 (1974).Google Scholar
6 Merz, C., Kunzer, M., Kaufmann, U., Akasaki, I., and Amano, H., Semicond. Sci. Technol. 11, 712(1996).Google Scholar
7 Eckey, L., Hoist, J. C., Maxim, P., Heitz, R., Hoffmann, A., Broser, I., Meyer, B. K., Wetzel, C., Mokhoc, E. N., and Baranov, P. G., Appl. Phys. Lett. 68, 415 (1996).Google Scholar
8 Fewster, P. F. and Andrew, N. L., J. Appl. Cryst. 28, 451 (1995).Google Scholar
9 Balkas, C. M., Basceri, C., and Davis, R. F., Powder Diffraction 10, 266 (1995).Google Scholar
10 Gassmann, A., Suski, N. N. T., Kisielowski, C., Jones, E., Weber, E. R., Liliental-Weber, A., Rubin, M. D., Heleva, H. I., Grzegory, I., Bockowski, M., Jun, J., and Porowski, S., J. Appl. Phys. 80, 2195 (1996).Google Scholar
11 Pakula, K., Wysmolek, A., Korona, K. P., Baranowski, J. M., Stepniewski, R., Grzegory, I., Bockowski, M., Jun, J., Krukowski, S., Wroblewski, M., and Porowski, S., Solid State Commun. 97, 919(1996).Google Scholar
12 Tu, K. N., Mayer, J. W., and Feldman, L. C., Electronic Thin Film Science, Vol. 84 (Macmillan, New York, 1992).Google Scholar
13 Savastenko, V. A. and Sheleg, A. U., Phys. Status Solidi A 48, 135 (1978).Google Scholar
14 Azuhata, T., Sota, T., and Suzuki, K., J. Phys.: Condens. Matter 8, 3111 (1996).Google Scholar
15 Kisielowski, C., Krüger, J., Rumimov, S., Suski, T., A., J. W. III, Jones, E., Liliental-Weber, Z., Rubin, M., Weber, E. R., Bremser, M. D., and Davis, R. F., submitted to Phys. Rev. B (1996).Google Scholar
16 Detchprohm, T., Hiramatsu, K., Itoh, K., and Akasaki, J. J. A. P. I., Jpn. J. Appl. Phys. 10B, L1454 (1992).Google Scholar
17 Landolt-Börnstein; Vol. 17, edited by Madelung, O. (Springer, New York, 1982).Google Scholar
18 Shan, W., Schmidt, T. J., Hauenstien, R. J., Song, J. J., and Goldenberg, B., Appl. Phys. Lett. 66, 3492 (1995).Google Scholar
19 Pirouz, P., presented at the Nitride Workshop on Wide Bandgap Nitrides, St. Louis (1996)Google Scholar
20 Chien, F., Jing, X., Pirouz, P., Bremser, M. D., and Davis, R. F., Appl. Phys. Lett. 68, 2678 (1996).Google Scholar