Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T15:29:25.170Z Has data issue: false hasContentIssue false

Boron Doping Effects in Microcrystalline Silicon

Published online by Cambridge University Press:  01 February 2011

Wolfhard Beyer
Affiliation:
[email protected], Forschungszentrum Jülich GmbH, IEF-5 Photovoltaik, Leo Brandt Strasse, Jülich, 52425, Germany, ++492461613925, ++492461613735
Lars Niessen
Affiliation:
[email protected], Forschungszentrum Jülich GmbH, IEF-5 Photovoltaik, Leo Brandt Strasse, Jülich, 52425, Germany
Frank Pennartz
Affiliation:
[email protected], Forschungszentrum Jülich GmbH, IEF-5 Photovoltaik, Leo Brandt Strasse, Jülich, 52425, Germany
Get access

Abstract

Conditions leading to high conductivities (up to 300 S/cm) in chlorosilane-based boron-doped microcrystalline Si:Cl:H films are investigated. It is found that the high conductivity originates primarily from the growth of highly crystalline material with a high concentration of boron. Furthermore, these films grow with relatively low chlorine and hydrogen concentrations of a few percent and, according to effusion measurements of hydrogen and implanted helium, in a relatively compact structure. At a boron doping level of 1%, admixture of 10% silane to the tetrachlorosilane results in the growth of amorphous material of low conductivity while for admixture of up to 90% of silicontetrafluoride, microcrystalline Si films with high conductivities can be grown.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Prasad, K., Kroll, U., Finger, F., Shah, A., Dorier, J., Howling, A., Baumann, J., Schubert, M., MRS Symp. Proc. 219, 469 (1991).Google Scholar
2 Carius, R., Finger, F., Backhausen, U., Luysberg, M., Hapke, P., Houben, L., Otte, M., Overhof, H., MRS Symp. Proc. 467, 283 (1997).Google Scholar
3 Beyer, W., Rech, B., Carius, R., Albert, M., Terasa, R., in Proceedings PV in Europe Conference, Rome, 7.-11.Oct 2002 (WIP Munich and ETA Florence, 2002) p. 75.Google Scholar
4 Beyer, W., Carius, R., Lejeune, M., Zastrow, U., MRS Symp. Proc. 808, 389 (2004).Google Scholar
5 Beyer, W., Carius, R., and Zastrow, U., MRS Symp. Proc. 862, 139 (2005).Google Scholar
6 Houben, L., Luysberg, M., Hapke, P., Carius, R., Wagner, H., Philos. Mag. A77, 1447 (1998).Google Scholar
7 Beyer, W., Carius, R., Zastrow, U., J. Non-Cryst. Solids 352, 1402 (2006).Google Scholar
8 Flückinger, R., Meier, J., Shah, A., Catana, A., Brunel, M., Nguyen, H.V., Collins, R.W., Carius, R., MRS Symp. Proc. 336, 551 (1994).Google Scholar
9 Ghosh, S., De, A., Ray, S., Barua, A.K., J. App. Phys. 71, 5205 (1992).Google Scholar
10 Perrin, J., Takeda, Y., Hirano, N., Takeuchi, Y., Matsuda, A., Surface Science 210, 114 (1989).Google Scholar
11 Beyer, W., Solar Energy Materials and Solar Cells 78, 235 (2003).Google Scholar