Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:25:32.780Z Has data issue: false hasContentIssue false

Boron Diffusion in Bulk Cobalt Disilicide

Published online by Cambridge University Press:  21 February 2011

P. Gas
Affiliation:
URA 443, CNRS, Laboratorie de Mdtallurgie, Case 511, Universitéd Saint Jérome, 13397, Marseille cedex 13, France
C. Zaring
Affiliation:
The Royal Institute of Technology, Solid State Electronics, P.O. Box 1298, S-164 28 Kista-Stockholm, Sweden
B.G. Svensson
Affiliation:
The Royal Institute of Technology, Solid State Electronics, P.O. Box 1298, S-164 28 Kista-Stockholm, Sweden
M. Östling
Affiliation:
The Royal Institute of Technology, Solid State Electronics, P.O. Box 1298, S-164 28 Kista-Stockholm, Sweden
H.J. Whitlow
Affiliation:
The Royal Institute of Technology, Solid State Electronics, P.O. Box 1298, S-164 28 Kista-Stockholm, Sweden
T. Barge
Affiliation:
URA 443, CNRS, Laboratorie de Mdtallurgie, Case 511, Universitéd Saint Jérome, 13397, Marseille cedex 13, France
Get access

Abstract

The lattice diffusion of boron in bulk cobalt disilicide has been studied at temperatures between 450 and 950°C. Two different diffusion sources, a deposited surface layer of boron and an implanted boron distribution, were used. The lattice diffusion coefficient has been deduced from the boron profiles measured by secondary ion mass spectrometry (SIMS); in the studied temperature range the coefficient varies between 6.2×10−17 and 3.0× 10−11 cm2/s with an activation energy of 2.0 eV. These values reveal a very rapid lattice diffusion and agree with results reported previously in the literature concerning redistribution of boron implanted in thin films of CoSi2, and it also emphasizes the important role played by interfaces during the boron redistribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] d'Heurle, F.M. and Gas, P., J. Mat. Res. 1, 205, (1986).Google Scholar
[2] Probst, V., Lippens, P., hove, L. Van den, Maex, K., Schaber, H., and Keersmaecker, R. De, Proccedings of the 17th European Solid State Device Research Conference, Bologna, Sept 14–17, 1987, p 437.Google Scholar
[3] Liu, R., Williams, D.S. and Lynch, W.T., J. Appl. Phys. 63, 1990 (1988).Google Scholar
[4] Brown, A.A., Moynagh, P.B. and Rosser, P.J., Properties of Silicon.INSPEC, The institution of electrical engineers, London and New York, EMIS Datareviews No.4, 1988, p.325.Google Scholar
[5] Gas, P., Deline, V., d'Heurle, F.M., Michel, A. and Scilla, G., J. Appl. Phys.60, 1634 (1986).Google Scholar
[6] P. Gas,, Scilla, G., Michel, A., LeGoues, F.K., Thomas, O. and d'Heurle, F.M., J. Appl. Phys. 63, 5335, (1988).Google Scholar
[7] Thomas, O., Gas, P., d'Heurle, F.M., LeGoues, F.K., Michel, A. and Scilla, G., J. Vac: Sci. Technol. A 6, 1736 (1988).Google Scholar
[8] Thomas, O., Gas, P., Charai, A., LeGoues, F.K., Michel, A., Scilla, G. and d'Heurle, F.M., J. Appl. Phys. 64, 2973 (1988).Google Scholar
[9] Ciccariello, J.C., Poize, S. and Gas, P., J. Appl. Phys. 67, 3315 (1990).Google Scholar
[10] Boltaks, B.I., Diffusion in Semiconductors, Ed. Goldsmid, H.J., Infosearch, London, 1963, p. 93.Google Scholar
[11] Ghez, R., Oehrlein, G.S., Sedgwick, T.O., Morehead, F.F. and Lee, Y.H., Appl. Phys. Lett., 45, 881 (1984).Google Scholar
[12] Kendall, M.G. and Stuart, A., The advanced theory of statistics, Vol.1, Griffin, 1963, p.89.Google Scholar
[13] Nielsen, Sten Kogh, private communication.Google Scholar
[14] Adda, Y. and Philibert, J., La diffusion dans les solides, p. 142, P.U.F., Paris (1966).Google Scholar