Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:32:34.311Z Has data issue: false hasContentIssue false

Boron Diffusion and Silicon Self-Interstitial Recycling between SiGeC layers

Published online by Cambridge University Press:  17 March 2011

M. S. Carroll*
Affiliation:
Dept. of Electrical Engineering, Princeton University, Princeton NJ 08544
J. C. Sturm
Affiliation:
Dept. of Electrical Engineering, Princeton University, Princeton NJ 08544
*
Current address: Sandia National Laboratories, Albuquerque, NM 87185-1077
Get access

Abstract

Substitutional carbon is known to locally reduce silicon self-interstitial concentrations and act as a barrier to self-interstitial migration through the carbon rich regions. A silicon spacer between two carbon rich SiGe layers is fabricated in this work to examine self-interstitial generation in a region that is isolated from self-interstitial formation at the surface or in the silicon bulk. Boron marker layers above, below and in between two SiGeC layers are used to monitor the self-interstitial concentration between the substitutional carbon. No evidence of self- interstitial depletion in the silicon spacer is observed, despite annealing in conditions believed sufficient to allow the self-interstitials to reach and react with surrounding substitutional carbon. Simulations of the self-interstitial and carbon indicate that the silicon self interstitial concentration in the spacer layer can be sustained in part due to a silicon self-interstitial recycling process through a reverse “kick-out” reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gossmann, H.-J., Haynes, T. E., Stolk, P. A., Jacobson, D. C., Gilmer, G. H., Poate, J. M., Luftman, H. S., Mogi, T. K., and Thompson, M. O., Appl. Phys. Lett., vol. 71, pp. 3862, 1997.Google Scholar
2. Fang, W. T. C., Fang, T. T., Griffin, P. B., and Plummer, J. D., Appl. Phys. Lett., vol. 68, pp. 2085, 1996.Google Scholar
3. Ural, A., Griffin, P. B., and Plummer, J. D., J. Appl. Phys., vol. 85, pp. 6440, 1999.Google Scholar
4. Bracht, H., Haller, E. E., and Clark-Phelps, R., Phys. Rev. Lett., vol. 81, pp. 393, 1998.Google Scholar
5. Pinto, M. R., Boulin, D. M., Rafferty, C. S., Smith, R. K., Coughran, W. M., Kizilyalli, I. C., and Thoma, M. J., Tech. Digest IEDM, pp. 923, 1992.Google Scholar
6. Carroll, M., Sturm, J. C., Napolitani, E., Salvador, D. De, Berti, M., Stangl, J., and Bauer, K., Phys. Rev. B, vol. 64, pp. 3308, 2001.Google Scholar
7. Dunham, S. T. and Plummer, J. D., J. Appl. Phys., vol. 71, pp. 685, 1992.Google Scholar
8. Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., and Lefforge, D., Appl. Phys. Lett., vol. 67, pp. 706, 1995.Google Scholar
9. Carroll, M., Sturm, J. C., and Buyuklimanli, T., Phys. Rev. B, vol. 64, pp. 5316, 2001.Google Scholar
10. Carroll, M., Chang, C.-L., Sturm, J. C., and Buyuklimanli, T., Appl. Phys. Lett., vol. 73, pp. 3695, 1998.Google Scholar
11. Scholz, R., Goesele, U., Huh, J. Y., and Tan, T. Y., Appl. Phys. Lett., vol. 72, pp. 2, 1998.Google Scholar
12. Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys., vol. 61, pp. 289, 1989.Google Scholar
13. Roth, D. J. and Plummer, J. D., J. Electrochem. Soc., vol. 141, pp. 1074, 1994.Google Scholar
14. Pindl, S., Biebl, M., and Hammerl, E., J. Electrochemical Soc., vol. 144, pp. 4022, 1997.Google Scholar
15. Gossmann, H.-J., Rafferty, C. S., Luftmann, H. S., Unterwald, F. C., Boone, T., and Poate, J. M., Appl. Phys. Lett., vol. 63, pp. 639, 1993.Google Scholar
16. Scholz, R. F., Werner, P., Goesele, U., and Tan, T. Y., Appl. Phys. Lett., vol. 74, pp. 392, 1999.Google Scholar
17. Ruecker, H., Heinemann, B., and Kurps, R., Phys. Rev. B, vol. 64, pp. 073202, 2001.Google Scholar
18. Ural, A., Griffin, P. B., and Plummer, J. D., Phys. Rev. Lett., vol. 83, pp. 3454, 1999.Google Scholar