Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:56:29.230Z Has data issue: false hasContentIssue false

Bond-valence Based Computational Design of High Performance Lithium Ion Battery Cathode Materials

Published online by Cambridge University Press:  20 September 2011

Stefan Adams*
Affiliation:
National Department of Materials Science and Engineering, National University of Singapore, 117576, Singapore
Get access

Abstract

Linking the bond valence mismatch to the absolute energy scale, a generally applicable Morse-type force-field is developed and applied to study ion conduction in mixed conducting solids using both an energy landscape approach and molecular dynamics (MD) simulations. Exploring strategies to enhance the power performance of safe low cost lithium ion battery cathode materials, amblygonite-type “high voltage” cathode materials LiVPO4F and LiFeSO4F are used as examples. The amblygonite-type structure exhibits channels for low-energy migration in combination with moderate energy thresholds for "back-up" pathways in perpendicular directions mitigating the effects of channel blocking in mixed conductors with strictly one-dimensional Li+ motion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Adams, S., J. Power Sources, 159, 200 (2006).Google Scholar
2. Swenson, J. and Adams, S., Phys. Rev. B, 63, 054201 (2000).Google Scholar
3. Müller, C. Zienicke, E., Adams, S., Habasaki, J. and Maass, P., Phys. Rev. B, 75, 014203 (2007).Google Scholar
4. Adams, S. and Prasada Rao, R., Phys. Chem. Chem. Phys., 11, 3210 (2009).Google Scholar
5. Brown, I.D., Chem. Rev. 109, 6858 (2009).Google Scholar
6. Adams, S. and Tan, E. S., Solid State Ionics, 179, 33 (2008).Google Scholar
7. Adams, S., Solid State Ionics, 177, 1625 (2006).Google Scholar
8. Adams, S., Acta Crystallogr. B, Struct. Sci. 57, 278 (2001).Google Scholar
9. Adams, S., softBV ver. 0.96, 2004, http://www.softBV.net.Google Scholar
10. Brown, I. D., Acta Crystallogr. B, Struct. Sci. 48, 553 (1992).Google Scholar
11. Adams, S.; J. Solid State Electrochem. 14, 1787 (2010).Google Scholar
12. Prasada Rao, R., Tho, T.D and Adams, S., Solid State Ionics 181, 16 (2010).Google Scholar
13. Adams, S. and Prasada Rao, R.; Solid State Ionics, 184, 5761 (2011).Google Scholar
14. Barker, J., Saidi, M.Y., Swoyer, J., J. Electrochem.Soc.,150 A1394 (2003).Google Scholar
15. Liu, H. et al. , J. Solid State Electrochem. 12, 1011 (2008).Google Scholar
16.(a)Larson, A.C., von Dreele, R. B., General Structure Analysis System (GSAS); Report LAUR 86-748; Los Alamos National Laboratory: Los Alamos, NM, 2000.(b)B.J. Toby, J. Appl. Crystallogr. 34, 210 (2001).Google Scholar
17. Barker, J., Gover, R. K. B., Burns, P. et al. , J. Electrochem. Soc., 152, A1776 (2005).Google Scholar
18. Barker, J. et al. , J. Power Sources 174, 927 (2007).Google Scholar
19. Yin, S.-C., Subramanya Herle, P., Higgins, A. et al. , Chem. Mater. 18, 1745 (2006).Google Scholar
20. Recham, N. et al. , Nature Materials, 9, 68 (2010).Google Scholar
21. Tarascon, J-M. et al. ., Chem. Mater., 22, 724 (2010).Google Scholar
22. Barpanda, P. et al. .; J. Mater. Chem., 20, 1659 (2010).Google Scholar
23. Tripathi, R. et al. ., Angew. Chem. Int. Ed. 49, 87388742 (2010).Google Scholar