Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:23:46.559Z Has data issue: false hasContentIssue false

Bonding and Vibrational Properties of CO-Adsorbed Copper

Published online by Cambridge University Press:  10 February 2011

Steven P. Lewis
Affiliation:
Department of Chemistry and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, PA 19104.
Andrew M. Rapp
Affiliation:
Department of Chemistry and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, PA 19104.
Get access

Extract

Accurate density functional calculations are performed to investigate the structure and vibrational dynamics of carbon monoxide adsorbed to the (100) surface of copper. The adsorbate and substrate are considered as a unified system, with atoms of each treated on an equal footing. Coupling between the two components is found to have a significant effect. In particular, frustrated translational motion mixes strongly with transverse phonons of the substrate to form a broad resonance. Direct computation of anharmonic coupling between the internal CO bond stretching mode and other adsorbate-weighted modes confirms the experimental conclusion that the transient CO-stretch response seen in recent pump-probe studies is an indirect probe of the transient dynamics of frustrated translations. In this light, the computed resonance between this mode and substrate phonons suggests a dephasing mechanism to account for the observed relaxation dynamics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Somorjai, G. A., Introduction to Surface Chemistry and Catalysis, (Wiley, New York, 1994).Google Scholar
[2] Zhou, X.-L., Zhu, X.-Y., and White, J. M., Surf. Sci. Rep. 13, 73 (1991).Google Scholar
[3] Vanselow, R., et al., ed. Chemistry and Physics of Solid Surfaces, Vol. I-III, (CRC, Boca Raton, 1977–82); and Vanselow, R. and Howe, R., eds. Chemistry and Physics of Solid Surfaces, Vol. IV- VIII, (Springer-Verlag, Berlin, 19821990).Google Scholar
[4] Hinggi, P., Talkner, P., and Borkovek, M., Rev. Mod. Phys. 62, 251 (1990).Google Scholar
[5] Germer, T. A., Stephenson, J. C., Heilweil, E. J., and Cavanagh, R. R., Phys. Rev. Lett. 71, 3327 (1993); and J. Chem. Phys. 101, 1704 (1994).Google Scholar
[6] Culver, J. P., Li, M., Jahn, L. G., Hochstrasser, R. M., and Yodh, A. G., Chem. Phys. Lett. 214, 431 (1993).Google Scholar
[7] Head-Gordon, M. and Tully, J. C., J. Chem. Phys. 96, 3939 (1992), and Phys. Rev. B 46, 1853 (1992).Google Scholar
[8] Ryberg, R., Surf. Sci. 114, 627 (1982).Google Scholar
[9] Hirschmugl, C. J., Williams, G. P., Hoffmann, F. M., and Chabal, Y. J., Phys. Rev. Lett. 65, 480 (1990); J. Electron Spectrosc. 54/55, 109 (1990); and C. J. Hirschmugl, Y. J. Chabal, F. M. Hoffman, and G. P. Williams, J. Vac. Sci. Technol. A 12, 2229 (1994).Google Scholar
[10] Ellis, J., Toennies, J. P., and Witte, G., J. Chem. Phys. 102, 5059 (1995).Google Scholar
[11] Tully, J. C., Gomez, M., and Head-Gordon, M., J. Vac. Sci. Technol. A 11, 1914 (1993).Google Scholar
[12] Hohenberg, P. and Kohn, W., Phys. Rev. 136, 864B (1964).Google Scholar
[13] Kohn, W. and Sham, L. J., Phys. Rev. 140, 1133A (1965).Google Scholar
[14] Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
[15] Perdew, J. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
[16] Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
[17] Hellmann, H., Einfuhrung in die Quantumchemie, (Deuticke, Leipzig, 1937).Google Scholar
[18] Feynman, R. P., Phys. Rev. 56, 340 (1939).Google Scholar
[19] Phillips, J. C. and Kleinman, L., Phys. Rev. 116, 287 (1959).Google Scholar
[20] Ihm, J., Zunger, A., and Cohen, M. L., J. Phys. C 12, 4409 (1979); and 13, 3095 (1980).Google Scholar
[21] Pickett, W. E., Comp. Phys. Rep. 9, 115 (1989).Google Scholar
[22] Hamann, D. R., Schliiter, M., and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).Google Scholar
[23] Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
[24] Rappe, A. M., Rabe, K., Kaxiras, E., and Joannopoulos, J. D., Phys. Rev. B 41, 1227 (1990).Google Scholar
[25] Chadi, D. J. and Cohen, M. L., Phys. Rev. B 8, 5747 (1973).Google Scholar
[26] Kittel, C., Introduction to Solid State Physics, 6th Ed., (Wiley, New York, 1986), p. 23.Google Scholar
[27] Tracy, J. C., J. Chem. Phys. 56, 2748 (1972).Google Scholar
[28] Andersson, S. and Pendry, J. B., Phys. Rev. Lett. 43, 363 (1979).Google Scholar
[29] McConville, C. F., Woodruff, D. P., Prince, K. C., Paolucci, G., Chab, V., Surman, M., and Bradshaw, A. M., Surf. Sci. 166, 221 (1986).Google Scholar
[30] Jiang, Q. T., Fenter, P., and Gustafsson, T., Phys. Rev. B 44, 5773 (1991).Google Scholar
[31] Th. Rodach, Bohnen, K.-P., and Ho, K. M., Surf. Sci. 286, 66 (1993).Google Scholar
[32] teVelde, G. and Baerends, E. J., Chem. Phys. 177, 399 (1993).Google Scholar
[33] Gray, H. B., Chemical Bonds: An Introduction to Atomic and Molecular Structure, (Benjamin, Menlo Park, 1973), p. 98.Google Scholar