Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T08:01:33.083Z Has data issue: false hasContentIssue false

Bismuth Contribution to the Improvement of the Positive Electrode Performances in Ni/Cd and Ni/MH Batteries

Published online by Cambridge University Press:  18 March 2011

V. Pralong
Affiliation:
Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne & CNRS, 33, rue St Leu 80039 Amiens, France
A. Delahaye-Vidal
Affiliation:
Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne & CNRS, 33, rue St Leu 80039 Amiens, France
B. Beaudoin
Affiliation:
Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne & CNRS, 33, rue St Leu 80039 Amiens, France
J-M. Tarascon
Affiliation:
Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne & CNRS, 33, rue St Leu 80039 Amiens, France
Get access

Abstract

In this study we investigated the evolution of nickel hydroxide, which acts at the positive electrode of the Ni/Cd, Ni/MH and Ni/H2 alkaline batteries. We found that the addition of bismuth oxide in the course of the active material preparation prevents the dissolution-re-crystallization processes of the nickel hydroxide that are harmful to the electrode efficiency. From XRD and SEM studies, it is shown that treatment of the bismuth doped-nickel hydroxide by hydrogen in 5 N KOH electrolyte prevents metallic nickel formation. Moreover, it appears to stabilize the α-type nickel hydroxide structure, preventing its transformation into the β-Ni(OH)2 phase. Finally, an implementation of these findings towards the most efficient use of nickel positive electrodes is shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bode, H., Dehmelt, K., Witte, J., Electrochem. Acta, 11, 1079 (1966).Google Scholar
2. Oshitani, M., Yufu, H., Takashima, K., Tsuji, S. and Massumaru, Y., J. Electrochem. Soc., 136, 1590 (1989).Google Scholar
3. Benson, P., Briggs, G. W. D. and Wynne-Jones, W. F. K., Electrochim. Acta, 9, 275 (1964).Google Scholar
4. Zimmerman, Al. H. and Seaver, R., J. Electrochem. Soc., 137, 2662 (1990).Google Scholar
5. Butel, M., Gautier, L. and Delmas, C., Solid State Ionics, 122, 271 (1999); L. Gautier, Thèse de doctorat, Bordeaux I (1995).Google Scholar
6. Pralong, V., Delahaye-Vidal, A., Beaudoin, B., Gérand, B., Tarascon, J-M., J. Mat. Research, 9, 955 (1999).Google Scholar
7. Pralong, V., Delahaye-Vidal, A., Beaudoin, B., Leriche, J-B., Tarascon, J-M., J. Electrochem. Soc., 147, 1306 (2000).Google Scholar
8. Bihan, S. Le and Figlarz, M., Electrochim. Acta, 18, 123 (1973).Google Scholar
9. Pralong, V., Delahaye-Vidal, A., Beaudoin, B., Leriche, J-B., Scoyer, J., Tarascon, J-M., J. Electrochem. Soc., 147, 2096 (2000).Google Scholar
10. Murphy, D. W., Zahurak, S. M., Vias, B.et al. Chem. Mat., 555, 767 (1993).Google Scholar
11. SacEpée, N., Beaudoin, B., Pralong, V., Jamin, T., Tarascon, J.-M. and Delahaye-Vidal, A., J. Electrochem. Soc., 146, 2376 (1999).Google Scholar
12. Tuomi, P., J. Electrochem. Soc., 1, 112, (1965).Google Scholar
13. , Hanabusa, Patent Application N° Jp 8-195198 (1996) Furukawa.Google Scholar
14. Miyamoto, K., Fukuju, T., Sugimoto, K., Patent, U.S., Serial N° 557.394 (1995).Google Scholar
15. Inoue, M., Japanese patent, Application N° Hei 8-331055 (1996) Sanyo.Google Scholar
16. Niiyama, K., and Maeda, R., Matsusita, Y., Nogami, M., Yonetsu, I. Nishio, T., Japanese patent, Application, N° Hei 9-278117 (1997).Google Scholar