Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T19:07:01.804Z Has data issue: false hasContentIssue false

Biotechnological Mineral Composites via Vaterite Precursors

Published online by Cambridge University Press:  25 May 2012

E. Weber
Affiliation:
INM – Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany; Saarland University, Department Biosciences – Plant Biology, Campus A2.4, D-66123 Saarbruecken, Germany
C. Guth
Affiliation:
INM – Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;
M. Eder
Affiliation:
INM – Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;
P. Bauer
Affiliation:
Saarland University, Department Biosciences – Plant Biology, Campus A2.4, D-66123 Saarbruecken, Germany
E. Arzt
Affiliation:
INM – Leibniz Institute for New Materials gGmbH, Functional Surfaces Group, Campus D2.2, D-66123 Saarbruecken, Germany
I. M. Weiss*
Affiliation:
INM – Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;
*
*Correspondence: [email protected]
Get access

Abstract

Vaterite is one of the thermodynamically less stable polymorphs of calcium carbonate. Under ambient conditions it transforms into calcite, the most stable form of calcium carbonate. Organisms are able to stabilize minerals such as vaterite by means of organic molecules. The exact mechanisms how biomineralization proteins interact with metastable mineral phases are, however, less well understood. Many in vitro studies were performed using calcite as a model system. A deeper understanding of the interaction of organic molecules with metastable mineral phases would make them useful as a tool to control mineralization processes in vitro. In this study, we report on the co-precipitation of a natively soluble histidine-tagged GFP (green fluorecent protein) with a metastable vaterite phase and the subsequent insolubility of the fluorescent organic matrix in a 30μl calcium carbonate precipitation assay. The intrinsic fluorescence of GFP is conserved during the interaction with the mineral phase, indicating proper folding even in the insoluble state. This experiment can be extended to obtain deeper insights into some mechanistic models of biomineralization proteins by tracking native and modified GFP proteins microscopically during various stages of mineral precipitation and dissolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lowenstam, H. A. and Weiner, S., On biomineralization, Oxford Univ. Press, New York, 1989.Google Scholar
[2] Belcher, A. M., Wu, X. H., Christensen, R. J., Hansma, P. K., Stucky, G. D., and Morse, D. E., Nature 381 (1996) 5658.10.1038/381056a0Google Scholar
[3] Falini, G., Albeck, S., Weiner, S., and Addadi, L., Science 271 (1996) 6769.10.1126/science.271.5245.67Google Scholar
[4] Beck, R. and Andreassen, J.-P., Journal of Crystal Growth 312 (2010) 22262238.10.1016/j.jcrysgro.2010.04.037Google Scholar
[5] Lippmann, F., Sedimentary carbonate minerals, Springer, Heidelberg, 1973.10.1007/978-3-642-65474-9Google Scholar
[6] Ma, Y., Gao, Y., and Feng, Q., Materials Science and Engineering: C 31 (2011) 13381342.10.1016/j.msec.2011.04.016Google Scholar
[7] Lowenstam, H. A. and Abbott, D. P., Science 188 (1975) 363365.10.1126/science.1118730Google Scholar
[8] Frenzel, M. and Harper, E. M., Journal of Structural Biology 174 (2011) 321332.10.1016/j.jsb.2011.02.002Google Scholar
[9] Spann, N., Harper, E., and Aldridge, D., Naturwissenschaften 97 (2010) 743751.10.1007/s00114-010-0692-9Google Scholar
[10] Ji, B., Cusack, M., Freer, A., Dobson, P. S., Gadegaard, N., and Yin, H., Integrative Biology 2 (2010) 528535.10.1039/c0ib00007hGoogle Scholar
[11] Pokroy, B., Zolotoyabko, E., and Adir, N., Biomacromolecules 7 (2006) 550556.10.1021/bm050506fGoogle Scholar
[12] Weiss, I. M. and Schönitzer, V., Journal of Structural Biology 153 (2006) 264277.10.1016/j.jsb.2005.11.006Google Scholar
[13] Qiagen, The QIAexpressionist™ - A handbook for high-level expression and purification of 6xHis-tagged proteins, Qiagen, Hilden, Germany, 2003.Google Scholar
[14] Meldrum, F. C. and Cölfen, H., Chemical Reviews 108 (2008) 43324432.10.1021/cr8002856Google Scholar
[15] Gotliv, B.-A., Addadi, L., and Weiner, S., ChemBioChem 4 (2003) 522529.10.1002/cbic.200200548Google Scholar
[16] Weiss, I. M. and Marin, F., in Met. Ions Life Sci.. - Biomineralization: From Nature to Application, Vol. 4 (Sigel, A., Sigel, H., and Sigel, R. K. O., eds.), John Wiley & Sons, West Sussex, UK, 2008, p. 71126.Google Scholar
[17] Inouye, S. and Tsuji, F. I., FEBS Letters 341 (1994) 277280.10.1016/0014-5793(94)80472-9Google Scholar
[18] Retgers, J. W., Z. Phys. Chem. 12 (1893) 583622.Google Scholar
[19] Kahr, B. and Gurney, R. W., Chemical Reviews 101 (2001) 893951.10.1021/cr980088nGoogle Scholar
[20] Lakshminarayanan, R., Chi-Jin, E. O., Loh, X. J., Kini, R. M., and Valiyaveettil, S., Biomacromolecules 6 (2005) 14291437.10.1021/bm049276fGoogle Scholar
[21] Pai, R. K. and Cotlet, M., The Journal of Physical Chemistry C 115 (2011) 16741681.10.1021/jp109589hGoogle Scholar
[22] Chen, C.-L., Qi, J., Zuckermann, R. N., and DeYoreo, J. J., Journal of the American Chemical Society 133 (2011) 52145217.10.1021/ja200595fGoogle Scholar