Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T08:50:01.107Z Has data issue: false hasContentIssue false

Biosynthesis of Silver Nanoparticles

Published online by Cambridge University Press:  15 February 2011

Rajesh R. Naik
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Biotechnology Group, Wright-Patterson AFB, Dayton, OH 45433.
Sarah J. Stringer
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Biotechnology Group, Wright-Patterson AFB, Dayton, OH 45433.
Jay M. Johnson
Affiliation:
University of Dayton Research Institute, Dayton OH 45469. Email: [email protected]
Morley O. Stone
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Biotechnology Group, Wright-Patterson AFB, Dayton, OH 45433.
Get access

Abstract

The use of biomolecules in the creation of inorganic materials offers an alternative to conventional synthetic methods. Biomolecules are currently used to control nucleation and growth of inorganic nanoparticles. Here we demonstrate the formation of silver nanoparticles in the presence of silver-binding peptides. Examination of the silver nanoparticles by transmission electron microscopy revealed a variety of crystal morphologies such as hexagons, triangles and spheres. The peptides serve to reduce the silver ions in the aqueous solution to metallic silver as well as control crystal growth. The nucleation property of peptides can be used as tool for bottom-up fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lowenstam, H.A. Science, 211, 11261130 (1981).Google Scholar
2. Mann, S. Biomineralization: Principles and concepts in bioinorganic materials chemistry. 2001, Oxford: Oxford University Press.Google Scholar
3. Klaus-Joerger, T. Joerger, R. Olsson, E. & Granqvist, C-G., Trends Biotechnol., 19, 1520 (2001).Google Scholar
4. Kröger, N., Deutzmann, R., and Sumper, M.,. Science, 286, 11291132 (1999).Google Scholar
5. Meldrum, F.C. Mann, S. Heywood, B.R. Frankel, R.B. & Bazylinksi, D.A. Proc. R. Soc. Lond. B, 251, 238242 (1993).Google Scholar
6. Klaus, T. et al., Proc. Natl. Acad. Sci. U.S.A., 96, 1361113614 (1999)Google Scholar
7. Dameron, C.T. et al., Nature, 338, 596597 (1989).Google Scholar
8. Cha, J.N. et al., Nature, 403, 289292 (2000).Google Scholar
9. Gyorvary, E.S. et al., Nano Lett., 3, 315319 (2003).Google Scholar
10. Brown, S. Nature Biotechnol., 15, 269272 (1997).Google Scholar
11. Gaskin, D.J.H., Starck, K., and Vulfson, E.N., Biotech. Lett., 22, 12111216 (2000).Google Scholar
12. Whaley, S.R. English, D.S. Hu, E.L. Barbara, P.F. & Belcher, A.M. Nature, 405, 665668 (2000).Google Scholar
13. Naik, R.R. et al., J. Nanosci. Nanotech, 2, 95100 (2002).Google Scholar
14. Lee, S.-W., et al., Science, 296, 892895 (2002)Google Scholar
15. Gruen, L.C. Biochim. Biophys. Acta, 386, 270274 (1975).Google Scholar
16. Naik, R.R. et al., Nature Maters., 1, 169172 (2002).Google Scholar
17. Schatz, G.C. and Duyne, R.P. Van, Handbook of vibrational spectroscopy., ed. Chalmers, J.M. and Griffiths, P.R.. 2002, New York: Wiley.Google Scholar
18. Naik, R.R. et al., Prog. Org. Coatings, 2003: In press (2003).Google Scholar