Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T19:31:05.007Z Has data issue: false hasContentIssue false

Biomolecular Self-Assembly of Quantum-Dot Composites

Published online by Cambridge University Press:  15 February 2011

Carl W. Lawton
Affiliation:
University of Massachusetts Lowell, Department of Chemical Engineering and the Center for Imaging and Optical Computing, Lowell, MA 01854
Michael A. Fiddy
Affiliation:
University of Massachusetts Lowell, Department of Chemical Engineering and the Center for Imaging and Optical Computing, Lowell, MA 01854
Geoff Flynn
Affiliation:
University of Massachusetts Lowell, Department of Chemical Engineering and the Center for Imaging and Optical Computing, Lowell, MA 01854
Fadi Aboughanem
Affiliation:
University of Massachusetts Lowell, Department of Chemical Engineering and the Center for Imaging and Optical Computing, Lowell, MA 01854
Get access

Abstract

A biomimetic approach utilizing biomolecular self-assembly was used to tailor quantum-dot composites for use as nonlinear optical media. Yeast tRNA was utilized as an ion-exchange/nucleation site within a polymeric matrix (polyacrylamide). Cadmium ion-exchange and subsequent sulfide precipitation resulted in quantum-dot formation. Illumination of samples with an Argon laser (514 nm) utilizing the Z-scan measurement method resulted in χ3 values of +3.7 ×10−6 esu.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mann, S., Nature 349,285 (1991).CrossRefGoogle Scholar
2. Reike, P., Calvert, P.,. and Alper, M., MRS Sym. Proc. 174,101 (1990).Google Scholar
3. Dameron, C., Mehra, R., Kortan, A., Carrol, P., Steigerwald, M., Brus, L., Winge, D. Nature 338,596 (1989).Google Scholar
4. Dameron, C., and Winge, D., Inorganic Chemistry 29,1343 (1990).Google Scholar
5. Locker, D., Kirk-Othmer Encyclopedia of Chemical Technology,Vol 17 (John Wiley and Sons, New York, 1982), p.611 Google Scholar
6. Bianconi, P., Lin, J., and Strzelecki, A., Nature 349,315 (1991).Google Scholar
7. Wang, Y., Suna, A., andMahler, W., MRS Sym. Proc. 109,187 (1988)CrossRefGoogle Scholar
8. Ziolo, R., Giannelis, E., Weinstein, B., O'Horo, M., Ganguly, B., Mehrota, V., Russell, M., Huffman, D., Science 257,219 (1992)Google Scholar
9. Borelli, N., Hall, D., Holland, H., Smith, D., J. Applied Physics, 61,5399 (1987)Google Scholar
10. Wang, Y., and Herron, N., J. Phys. Chem. 91,257 (1987)Google Scholar
11. Herron, N., Wang, Y., Eddy, M., Stucky, G.,Cox, D., Bein, T., and Moller, K., J.American Chemical Society 111,530 (1989)CrossRefGoogle Scholar
12. Wang, Y., and Herron, N., J. Physical Chemistry, 92,4988 (1988)Google Scholar
13. Jain, R. K. and Lind, R. C., J. Opt. Soc. Amer., 73, (1983), 647.CrossRefGoogle Scholar
14. Ashai Glass Co. and Nagoya University; see Laser Focus World, July 1990, p64.Google Scholar
15. Ziman, L. G. et al, J. Mod. Optics, 37, (1990) 829.Google Scholar
16. Neeves, A. E. and Birnboim, M. H., J. Opt. Soc. Amer., B, 6, (1989), 787.Google Scholar
17. Drummond, T. J., Gourley, P. L. and Zipperian, T. E., IEEE Spectrum June '88, p33.Google Scholar
18. Efros, Al. L. and Efros, A. L., Sov. Phys. Semicond. 16, (1982), 772.Google Scholar
19. Brus, L. E., IEEE J. Quantum Electronics, QE–22, (1986) 1909.Google Scholar
20. Hache, F., Ricard, D. and Flytzanis, C., J.Opt. Soc. Amer., B3, (1986) 1647.Google Scholar
21. Butcher, P. N. and MacLean, T. P., Proc. Phys. Soc. 81, (1963), 219.Google Scholar
22. Chemla, D. S. and Miller, D. A. B., Opt. Lett., 11, (1986), 522.Google Scholar
23. Leung, K. M., Phys. Rev. A, 33, (1986), 2461.CrossRefGoogle Scholar
24. Windholz, M., Merck Index 10th Ed., (Merck & Co., Inc.Rahway, NJ 1983) p. 1185 Google Scholar
25. Hanamura, , Phys. Rev. B., 37,1273 (1988)CrossRefGoogle Scholar
26. Hiroshima, and Hanamura, , Nonlinear Optics, 1,81 (1991)Google Scholar