Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T06:59:24.328Z Has data issue: false hasContentIssue false

Biomimetic Lithography and Deposition Kinetics of Iron Oxyhydroxide Thin Films

Published online by Cambridge University Press:  15 February 2011

Peter C. Rieke
Affiliation:
Pacific Northwest Laboratory, Materials Sciences Department & Molecular Science Research Center, Richland, WA 99352
Barbara J. tarasevich
Affiliation:
Pacific Northwest Laboratory, Materials Sciences Department & Molecular Science Research Center, Richland, WA 99352 Dept. of Chemistry, Penn. State Univ., Univ. Park, PA 16802
Laurie L. Wood
Affiliation:
Pacific Northwest Laboratory, Materials Sciences Department & Molecular Science Research Center, Richland, WA 99352
Brian D. Marsh
Affiliation:
Pacific Northwest Laboratory, Materials Sciences Department & Molecular Science Research Center, Richland, WA 99352
Lin Song
Affiliation:
Pacific Northwest Laboratory, Materials Sciences Department & Molecular Science Research Center, Richland, WA 99352
Glen E. Fryxell
Affiliation:
Pacific Northwest Laboratory, Materials Sciences Department & Molecular Science Research Center, Richland, WA 99352
Mark H. Engelhard
Affiliation:
Pacific Northwest Laboratory, Materials Sciences Department & Molecular Science Research Center, Richland, WA 99352
Don R. Baer
Affiliation:
Pacific Northwest Laboratory, Materials Sciences Department & Molecular Science Research Center, Richland, WA 99352
Connie M. John
Affiliation:
Shaman Pharmaceuticals, S. San Francisco, CA 94080-4812
Get access

Abstract

Heterogeneous nucleation and crystal growth on protein substrates are critical steps in biological hard tissue formation. Self assembled monolayers can be derivatized with various organic functional groups to mimic the “nucleation proteins” for induction of mineral growth. Studies of nucleation and growth on SAMs can provide a better understanding of biomineralization and can also form the basis of a superior thin film deposition process. We demonstrate that micron-scale, electron and ion beam, lithographic techniques can be used to pattern SAMs with functional organic groups that either inhibit or promote mineral deposition. Patterned films of iron oxyhydroxide were deposited on the areas patterned with nucleation sites. Studies of the deposition kinetic of these films show that the surface indeed induces heterogeneous nucleation and that film formation does not occur via absorption of polymers or colloidal material formed homogeneously in solution. The nucleus interfacial free energy was calculated to be 88 mJ/m2 on a SAM surface composed entirely of sulfonate groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weiner, S., CRC Crit. Rev. Biochem. 1986, 20, 325.Google Scholar
2. Veis, A., Sabsay, B., In Insights into Mineralization, Biomineralization and Biological Metal Accumulation; Westbroek, P; de Jong, E. W.; Eds.; Reidel, Dordrecht, 1983, pp 273.CrossRefGoogle Scholar
3. Biomineralization, Chemical and Biochemical Perspectives; Mann, S., Webb, J., Williams, R. J. P., Eds.; VCH, Germany, 1989.Google Scholar
4. Sikes, C. S., Wheeler, A. P., Chemical Aspects of Regulation of Mineralization, Univ. of South Alabama Pulbication Service, Mobile, Alabama, 1988.Google Scholar
5. Mann, S., Archibald, D.D., Didymus, J.M., Douglas, T., Heywood, B.R., Meldrum, F. C., Reeves, N.J., Science 1993, 261, 1286 CrossRefGoogle Scholar
6. Zhao, X. K., Fendler, J. H., J. H., J. Phys. Chem 1991, 95, 3716. CrossRefGoogle Scholar
7. Landau, E. M., Levanon, M., Leiserowitz, L., Lahav, M., Sagiv, J., J.; Nature 1985, 318, 353. CrossRefGoogle Scholar
8. Rajam, S., et al., J. Chem. Soc., Faraday Trans. 1991, 87, 727. CrossRefGoogle Scholar
9. Heywood, B. R., Rajam, S., Mann, S., J. Chem. Soc., Faraday Trans. 1991, 87, 735. CrossRefGoogle Scholar
10. Addadi, L., Moradian, J., Shay, E., Maroudas, N. G., Weiner, S., S.; Proc. Natl. Acad. Sci. USA 1987, 84, 2732. CrossRefGoogle Scholar
11. Ulman, A., Advanced Materials 1993, 5, 55.CrossRefGoogle Scholar
12. Rieke, P. C., Bentjen, S. B., Chem. Materials 1993, 5, 43.CrossRefGoogle Scholar
13. Campbell, A. A., Fryxell, G. E., Graff, G. L., Rieke, P. C., Tarasevich, B. J., Scanning Microscopy 1993, 7, 423. Google Scholar
14. Bentjen, S. B., Nelson, D. A., Tarasevich, B. J., Rieke, P. C., J. Appl. Polymer Sci. 1992, 44, 965. CrossRefGoogle Scholar
15. Rieke, P. C., Tarasevich, B. J., Fryxell, G. E., Bentjen, S. B., Campbell, A. A., , A. A.; In Supramolecular Architecture: Synthetic Control in Thin Films and Solids. A.C.S Symposium Series #499; Bein, T, Ed., American Chemical Society: Washington, DC. 1992.Google Scholar
16. Heuer, A., et al., Science 1992, 255, 21098.CrossRefGoogle Scholar
17. Tarasevich, B. J., Rieke, P. C., McVay, G. L., Fryxell, G. E., Campbell, A. A., In Chemical Processing of Advanced Materials; J. Wiley & Sons: New York, 1992.Google Scholar
18. Tarasevich, B. J., Rieke, P. C., In Materials Synthesis Utilizing Biological Processes; Vol.174; Rieke, P. C., Calvert, P. D., Alper, M., Eds., Materials Research Society: Pittsburgh, PA, 1988.Google Scholar
19. Rieke, P. C., Bentjen, S. B., Tarasevich, B. J., Autrey, T. S., Nelson, D. A., In Materials Synthesis Utilizing Biological Processes, Vol 174, Rieke, P. C., Calvert, P. D., Alper, M., Eds., Materials Research Society: Pittsburgh, PA, 1990.Google Scholar
20. Gilbert, E. E., Sulfonation and Related Reactions; Krieger, Robert E. Publishing Co New York, 1977.Google Scholar
21. Wolery, T. J., EQ3NR-A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations, UCRL-MA-110662 pt. III, Lawrence Livermore National Laboratory, 1992 Google Scholar
22. Rieke, P. C., Baer, D. R., Fryxell, G. E., Engelhard, M. H., Porter, M. S., J. Vacuum Sci. Tech. A. 1993, 11, 2292. CrossRefGoogle Scholar
23. Rieke, P. C., Baer, D. R., Fryxell, G. E., Engelhard, M. H., Porter, M. S., Submitted to J. Vacuum Sci. Tech. A.Google Scholar
24. Dulcey, C. S., et al., Science 1991, 252, 0551. CrossRefGoogle Scholar
25. Calvert, J. M., et al., Thin Solid Films 1992, 210, 359.CrossRefGoogle Scholar
26. Calvert, J. M., et al., J. Vac. Sci. Technol. B 1991, 9, 3447. CrossRefGoogle Scholar
27. Dressick, W. J., Dulcey, C. S., Georger, J. H., Calvert, J. M., Chemistry of Materials 1993, 5, 148.CrossRefGoogle Scholar
28. Calvert, J. M., et al., J. Electrochem. Soc. 1992, 139, 1677.CrossRefGoogle Scholar
29. Lopez, G. P., Biebuyck, H. A., Frisbie, C. D., M.Whitesides, G., Science 1993, 260, 647. CrossRefGoogle Scholar
30. Abbott, N. L.; Folkers, J. P.; Whitesides, G. M.; Science 1992, 57, 1380. CrossRefGoogle Scholar
31. Rieke, P. C., Tarasevich, B. J., Wood, L. L., Engelhard, M. H., Baer, D.R., Fryxell, G. E., John, C. M., Laken, D. A., Jaehnig, M., Accepted in Langmuir.Google Scholar
32. Schwertman, U., Cornell, Iron Oxides in the Laboratory, VCH: New York, 1991.Google Scholar
33. Flynn, C. M. Jr., Chem. Revs. 1984, 84–1, 31. Google Scholar
34. Nielsen, A. E., Kinetics of Precipitation, Macmillan Co., New York, 1964.Google Scholar
35. Sohnel, O., Mullin, J. W., J. Coll. Int. Sci., 1988, 123, 43. CrossRefGoogle Scholar