Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T00:45:09.775Z Has data issue: false hasContentIssue false

Biomimetic Ceramics

Published online by Cambridge University Press:  28 February 2011

Paul Calvert*
Affiliation:
Arizona Materials Labs.4715 E.Fort Lowell Rd, Tucson AZ 85718
Get access

Abstract

This paper discusses the possible advantages to be gained from a bio-mimetic approach to ceramics and reviews the work now in progress that will lead us to be able to mimic biological structures with synthetic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lowenstam, H.A. and Weiner, S., “On biomineralization” Oxford University Press 1989Google Scholar
2. Currey, J.D., in “The Mechanical Properties of biological materials” Symp. Soc. Exptl. Biol. 34, eds. Vincent, J.F.V. and Currey, J.D., 1980, Cambridge Univ. Press.Google Scholar
3. Towe, K.M., “Echinoderm calcite”, Science 157, 1048, (1967)Google Scholar
4. Calvert, P., “Bio-mimetic processing of ceramics and composites”, Proc. 4th Ultrastructure Conference, Tucson Az 1989. in press.Google Scholar
5. Saraikaya, M., Gunnison, K., Yasrebi, M. and Aksay, I.A., “Mechanical propertymicrostructure relationships in Abalone shell” Materials Res. Soc. Symp. 174, 109 (1990)Google Scholar
6. Berman, A., Addadi, L. and Weiner, S., “Sea urchin polymers interact with growing calcite”, Nature 331 546 (1988)Google Scholar
Addadi, L., Berman, A., Moradian-Oldak, J. and Weiner, S., “Molecular recognition between protein and crystal: relevance to biomineralization” Presented at Materials Res. Soc. Symp., Boston, 1989 Google Scholar
7. Moskvina, M.A., Volkov, A.V., Grokhovskaya, T.Ye., Volynskii, A.L. and Bakeyev, N.F., “A study of the state of low molecular weight organic acids in oriented polymer matrices” Polymer Sci. USSR 26 2648 (1984)Google Scholar
8. Volkov, A.V., Moskvina, M.A., Volynskii, A.L. and Bakeyev, N.F., “Thermodynamic characteristics of melting and crystallization of low molar mass compounds in micropores of oriented polymer matrices” Polymer Sci. USSR 29 1814 (1987)Google Scholar
9. Dameron, C.T., Reese, R.N., Mehra, R.K., Kortan, A.R., Carroll, P.J., Steigerwald, M.L., Brus, L.E. and Winge, D.R., “Biosynthesis of cadmium sulphide quantum semiconductor crystallites” Nature 338 596 (1989)Google Scholar
10. Mann, S., Frankel, R.B. and Blakemore, R., “Structure, morphology and crystal growth of bacterial magnetite”, Nature 310 405 (1984)Google Scholar
11. Jean, J.H. and Ring, T.A. “Nucleation and growth of monosized TiO2 powders from alcohol solution”, Langmuir 2 251 (1986)Google Scholar
12. Wainwright, S.A., Biggs, W.D., Currey, J.D. and Gosline, J.M., “Mechanical Design in Organisms” Princeton University Press, 1986.Google Scholar
13. Vincent, J.F.V. “Structural biomaterials”, Macmillan, 1982.Google Scholar
14. Laria, V.J. and Heuer, A.H., “The microindentation behavior of several mollusk shells” Materials Res. Soc. Symp. 174, 125 (1990).Google Scholar
15. Jackson, A.P., Vincent, J.F.V. and Turner, R.M., “The mechanical design of nacre” Proc. Royal Soc. B234, 415 (1988);Google Scholar
Jackson, A.P. and Vincent, J.F.V., “A physical model of nacre”, Composites Sci. and Tech. 36 255 (1989).Google Scholar
16. Mann, S., Heywood, B.R., Rajam, S. and Birchall, J.D., “Controlled crystallization of CaCO3 under stearic acid monolayers” Nature 334 692 (1988)Google Scholar
17. Johnsson, M., Richardson, C., Bergey, E.J., Scannapieco, F.A., Levine, M.J. and Nancollas, G.H. “The influence of salivary proteins on the growth, aggregation and surface properties of hydroxyapatite particles” Materials Res. Soc. Symp. 174, 81 (1990).Google Scholar
18. Rieke, P.C., Bentjen, S.B., Tarasevich, B.J., Autrey, T.S. and Nelson, D.A., “Synthetic surfaces as models for biomineralization” Materials Res. Soc. Symp. 174, 69 (1990)Google Scholar
19. Sobon, C.A., Bowen, H.K., Broad, A. and Calvert, P.D., “Precipitation of magnetic oxides in polymers” J.Materials Sci. Lett. 6, 901 (1987)Google Scholar
Calvert, P. and Mann, S., “Review: Synthetic and biological composites formed by in-situ precipitation” J.Materials Sci 23, 3801 (1989)Google Scholar
Calvert, P.D., Broad, A. and Cloke, G., “Magnetic particles in polymer films by in-situ precipitation” Polymer Preprints 29(2), 246 (1988)Google Scholar
20. Wang, B., Huang, H., Brennan, A.B. and Wilkes, G.L., “Synthesis and characterization of new alumina-containing organic/inorganic hybrid materials” Polymer Prep. 30(2) 146 (1989)Google Scholar
21. Liu, S. and Mark, J.E. “Precipitation of iron oxide filler particles into an elastomer” Polymer Bull. 18 33 (1987)Google Scholar
22. Wang, S.-B. and Mark, J.E. “In-situ precipitation of reinforcing titania fillers”, Polymer Bull. 17 271 (1987)Google Scholar
23. Mauritz, K.A. and Jones, C.K., “Novel poly(n-butylmethacrylate)/ titanium oxide alloys produced by the sol-gel process for titanium alkoxides”, J.Appl. Polymer Sci. (1989)Google Scholar
24. Mauritz, K.A., Storey, R.F. and Jones, C.K., “Nafion-based microcomposites: silicon oxide-filled membranes” ACS Symposia (1989)Google Scholar
25. Calvert, P.D. and Broad, R.A., “A ‘bio-mimetic’ route to barium titanate sheets”, Materials Res. Soc. Symp. 174, 61 (1990).Google Scholar