Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:11:28.127Z Has data issue: false hasContentIssue false

BioMEMS Technologies for Regenerative Medicine

Published online by Cambridge University Press:  01 February 2011

Jeffrey T. Borenstein*
Affiliation:
[email protected], Draper Laboratory, Biomedical Engineering, Cambridge, Massachusetts, United States
Get access

Abstract

The emergence of BioMEMS fabrication technologies such as soft lithography, micromolding and assembly of 3D structures, and biodegradable microfluidics, are already making significant contributions to the field of regenerative medicine. Over the past decade, BioMEMS have evolved from early silicon laboratory devices to polymer-based structures and even biodegradable constructs suitable for a range of ex vivo and in vivo applications. These systems are still in the early stages of development, but the long-term potential of the technology promises to enable breakthroughs in health care challenges ranging from the systemic toxicity of drugs to the organ shortage. Ex vivo systems for organ assist applications are emerging for the liver, kidney and lung, and the precision and scalability of BioMEMS fabrication techniques offer the promise of dramatic improvements in device performance and patient outcomes.

Ultimately, the greatest benefit from BioMEMS technologies will be realized in applications for implantable devices and systems. Principal advantages include the extreme levels of achievable miniaturization, integration of multiple functions such as delivery, sensing and closed loop control, and the ability of precision microscale and nanoscale features to reproduce the cellular microenvironment to sustain long-term functionality of engineered tissues. Drug delivery systems based on BioMEMS technologies are enabling local, programmable control over drug concentrations and pharmacokinetics for a broad spectrum of conditions and target organs. BioMEMS fabrication methods are also being applied to the development of engineered tissues for applications such as wound healing, microvascular networks and bioartificial organs. Here we review recent progress in BioMEMS-based drug delivery systems, engineered tissue constructs and organ assist devices for a range of ex vivo and in vivo applications in regenerative medicine.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

2. Saltzman, W.M., Drug Delivery (Oxford Univ.Press, Oxford UK, 2001.)Google Scholar
3. Tao, S.L. and Desai, T.A., ADV. MATER. 17 1625 (2005).Google Scholar
4. McAllister, D.V., Wang, P.M., Davis, S.P., Park, J-H, Canatella, P.J., Allen, M.G. and Prausnitz, M.R., Proc. Nat. Acad. Soc. 100 13755 (2003).Google Scholar
5. Kaushik, S., Hord, A.H., Denson, D.D., McAllister, D.V., Smitra, S., Allen, M.G. and Prausnitz, M.R., Anest. Analg. 92 502 (2001).Google Scholar
6. Zahn, J.D., Desmukh, A.A., Pisano, A.P. and Liepmann, D., Biomed. Microdev. 6 183 (2004).Google Scholar
7. Chung, A.J., Kim, D. and Erickson, D., Lab. Chip. 8 330 (2008).Google Scholar
8. Eddington, D.T. and Beebe, D.J., Ieee Jmems 13 586 (2004)Google Scholar
10. Chen, Z., Kujawa, S.G., McKenna, M.J., Fiering, J.O., Mescher, M.J., Borenstein, J.T., Swan, E.E. and Sewell, W.F., J. Controlled Release 110 1 (2005).Google Scholar
11. Fiering, J., Mescher, M.J., Swan, E.E.L., Holmboe, M.E., Murphy, B.A., Chen, Z., Peppi, M., Sewell, W.F., McKenna, M.J., Kujawa, S.G. and Borenstein, J.T., Biomedical Microdevices, in press.Google Scholar
12. Santini, J., Cima, M. and Langer, R., Nature 397 335 (1999).Google Scholar
13. Dertinger, S.K.W., Jiang, X., Li, Z., Murthy, V.N. and Whitesides, G.M., Proc. Nat. Acad. Sci. 99, 12542 (2002).Google Scholar
14. Flemming, R.G., Murphy, C.J., Abrams, G.A., Goodman, S.L. and Nealey, P.F., Biomaterials 20, 573 (1999).Google Scholar
15. Bettinger, C.J., Orrick, B., Misra, A., Langer, R. and Borenstein, J.T., Biomaterials, 27, 2558 (2006).Google Scholar
16. Khetani, S.R. and Bhatia, S.N., Nature Biotech. 26 120 (2008).Google Scholar
17. Cararro, A., Hsu, W.M., Kulig, K.M., Cheung, W.S., Miller, M.L., Weinberg, E.J., Kaazempur-Mofrad, M.R., Borenstein, J.T., Vacanti, J.P. and Neville, C.. Biomed. Microdevices 10 795 (2008).Google Scholar
18. Lu, H., Koo, L.Y., Wang, W.M., Lauffenburger, D.A., Griffith, L.G. and Jensen, K.F., Anal. Chem. 76 5257 (2004).Google Scholar
19. Bhatia, S.N., Balis, U.J., Yarmush, M.L. and Toner, M., Faseb J 13 1883 (1999).Google Scholar
20. Hui, E.E. and Bhatia, S.N., Proc. Nat. Acad. Sci. 104 5722 (2007).Google Scholar
21. Powers, M.J., Janigian, D.M., Wack, K.E., Baker, C.S., Beer Stolz, D. and Griffith, L.G., Tissue Engineering 8 499 (2002).Google Scholar
22. Zhang, M., Lee, P.J., Hung, P.J., Johnson, T., Lee, L.P. and Kaazempur-Mofrad, M.R., Biomedical Microdevices 10 117 (2008).Google Scholar
23. Viravaidya, V., Sin, A. and Shuler, M.L., Biotechnol. Progress 20 316 (2004).Google Scholar
24. Khademhosseini, A., Borenstein, J.T., Langer, R. and Vacanti, J.P., Proc. Nat. Acad. Sci. 103 2480 (2006).Google Scholar
25. Borenstein, J.T., Terai, H., King, K.R., Weinberg, E.J., Kaazempur-Mofrad, M.R. and Vacanti, J.P., Biomedical Microdevices 4 167 (2002)Google Scholar
26. Wang, G.J., Chen, C.L., Hsu, S.H. and Chiang, Y.L., Microsyst. Technol. 12 120 (2005).Google Scholar
27. King, K.R., Wang, C.J., Kaazempur-Mofrad, M.R., Vacanti, J.P. and Borenstein, J.T., Adv. Mater. 16 2007 (2004).Google Scholar
28. Fidkowski, C., Kaazempur-Mofrad, M.R., Borenstein, J.T., Vacanti, J.P., Langer, R. and Wang, Y. Tissue Engineering 11 30 (2005).Google Scholar
29. Cabodi, M., Choi, N.W., Gleghorn, J.P., Lee, C.S., Bonassar, L.J. and Stroock, A.D., J. Amer. Chem. Soc. 127 13788 (2005).Google Scholar
30. Chrobak, K.M., Potter, D.R. and Tien, J., Microvasc. Res. 71 185 (2006).Google Scholar
31. Charest, J.L., Eliason, M.T., Garcia, A.J. and King, W.P., Biomaterials 27 2487 (2006).Google Scholar
32. Gomez, N., Chen, S. and Schmidt, C.E., J.R. Soc. Interface 13 223 (2007).Google Scholar
33. Kaazempur-Mofrad, M.R., Weinberg, E.J., Borenstein, J.T. and Vacanti, J.P., “Tissue Engineering: Multi-Scaled Representation of Tissue Architecture and Function”, in Complex Systems Science in Biomedicine, (Kluwer Academic - Plenum Publishers, New York, 2003.)Google Scholar
34. Iyer, R., Plouffe, B., Murthy, S.K. and Radisic, M., “Microreactors for Cardiac Tissue Engineering”, in Micro and Nanoengineering of the Cell Microenvironment, eds. Khademhosseini, A., Borenstein, J.T., Toner, M. and Takayama, S. (Artech House, Boston, 2008.)Google Scholar
35. Engelmayr, G.C. Jr., Cheng, M., Bettinger, C. J., Borenstein, J. T., Langer, R., and Freed, L. E., Nature Materials Nov 2 2008 (DOI:10.1038/nmat2316).Google Scholar
36. Kaazempur-Mofrad, M.R., Krebs, N.J., Vacanti, J.P. and Borenstein, J.T., PROC. 2004 Sensors and Actuators Conf., (Transducers Research Foundation, Cleveland OH, 2004.)Google Scholar
37. Lee, K.H., Kim, D.J., Min, B.G. and Lee, S.H., Biomedical Microdevices 9 435 (2007).Google Scholar
38. Nissenson, A.R., Ronco, C., Pergamit, G., Edelstein, M. and Watts, R., Hemodialysis Int'l. 9 210 (2005).Google Scholar
39. Baudoin, R., Griscom, L., Monge, M., Legallais, C. and Leclerc, E., Biotechnol. Prog. 23 1245 (2007).Google Scholar
40. Humes, H.D., Fissell, W.H. and Tiranathanagul, K., Kidney Intl. 69 1115 (2006).Google Scholar
41. Park, J., Li, Y., Berthiaume, F., Toner, M., Yarmush, M.L. and Tilles, A.W., Biotechnol. Bioeng. 90 632 (2005).Google Scholar
42. Burgess, K.A., Hu, H.H., Wagner, W.R. and Federspiel, W.J., Biomedical Microdevices Epub, PMID 18696229, 2008.Google Scholar
43. Hoganson, D.M., Anderson, J., Orrick, B. and Vacanti, J.P., Amer. Assoc. Thoracic Surgery Conf., 2008.Google Scholar