Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:15:43.939Z Has data issue: false hasContentIssue false

Biological Applications of Nanocrystalline Diamond

Published online by Cambridge University Press:  01 February 2011

Oliver A. Williams
Affiliation:
[email protected], Institute for Materials Research, Wide Bandgap Group, Wetenschapspark 1, Diepenbeek, 3590, Belgium
Michael Daenen
Affiliation:
[email protected], Institute for Materials Research, Wetenschapspark 1, Diepenbeek, 3590, Belgium
Ken Haenen
Affiliation:
[email protected], Institute for Materials Research, Wetenschapspark 1, Diepenbeek, 3590, Belgium
Get access

Abstract

Nanocrystalline diamond films have generated substantial interest in recent years due to their low cost, extreme properties and wide application arena. Diamond is chemically inert, has a wide electrochemical window and is stable in numerous harsh environments. Nanocrystalline diamond has the advantage of being readily grown on a variety of substrates at very low thickness, resulting in smooth conformal coatings with high transparency. These films can be doped from highly insulating to metallically conductive and at very high concentrations become superconducting.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Prelas, M. A., Popovici, G., and Bigelow, L. K., Handbook of Industrial Diamonds and Diamond Films. (Marcel Dekker Inc, New York, 1998), p.1214.Google Scholar
2 Yang, W., Auciello, O., Butler, J. E., Cai, W., Carlisle, J. A., Gerbi, J., Gruen, D. M., Knickerbocker, T., Lasseter, T.L., Russell, J. N., Smith, L.M., and Hamers, R. J., Nature Materials 1 (4), 253257 (2002).Google Scholar
3 Williams, O. A. and Jackman, R. B., Semicond. Sci. Technol. 18 (3), S34–S40 (2003).Google Scholar
4 Garrido, J. A., Hardl, A., Kuch, S., Stutzmann, M., Williams, O. A., and Jackmann, R. B., Applied Physics Letters 86 (7), 73504 (2005).Google Scholar
5 Nesladek, M., Tromson, D., Mer, C., Bergonzo, P., Hubik, P., and Mares, J. J., Applied Physics Letters 88 (23), 232111 (2006).Google Scholar
6 Fausett, B., Granger, M. C., Hupert, M. L., Wang, J., Swain, G. M., and Gruen, D. M., Electroanalysis 12 (1), 715 (2000).Google Scholar
7 Stotter, J., Zak, J., Behier, Z., Show, Y., and Swain, G. M., Analytical Chemistry 74 (23), 59245930 (2002).Google Scholar
8 Kaibara, Y., Sugata, K., Tachiki, M., Umezawa, H., and Kawarada, H., Diamond and Related Materials 12 (3–7), 560564 (2003); K.Sugata, M. Tachiki, T. Fukuda, H. Seo, and H. Kawarada, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 41 (7B), 4983–4986 (2002).Google Scholar
9 Specht, Christian G., Williams, Oliver A., Jackman, Richard B., and Schoepfer, Ralf, Biomaterials 25 (18), 40734078 (2004).Google Scholar