Published online by Cambridge University Press: 15 February 2011
Pulsed Laser Deposition method (PLD) was used to grow nitinol (NiTi) thin films with goal of investigating their biocompatibility. High purity Ni and Ti targets were alternatively ablated in vacuum with a laser beam (λ=355 nm, 10 Hz) and the material was collected on room temperature Ti substrates. X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and atomic force microscopy analyses have been performed to investigate the chemical composition, crystalline structure and surface morphology of the NiTi films. The nitinol layers biocompatibility has been tested using as a metric the extent to which the cells adhere during the culture period on the surface of NiTi layers deposited on Ti substrates. Vero and fibroblast cell lines dispersed into MEM (Eagle) solution containing 8% fetal bovine serum, at 37° C, were used for tests. Preliminary studies indicate that the interaction at the interface is specifically controlled by the surface morphology, (especially by surface roughness), and by the chemical state of the surface. Cell behavior after contact with NiTi/Ti structure for different intervals (18, 22 and 25 days for the Vero cells, and after 10 and 25 days for fibroblasts) supports the conclusion that NiTi is a very good candidate as a biocompatible material.