Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:54:59.005Z Has data issue: false hasContentIssue false

Biocompatibility Comparison of Stainless Steel, Gold-Coated, and Heat-Treated Gold-Coated Endovascular Stents

Published online by Cambridge University Press:  17 March 2011

Alisa S. Morss
Affiliation:
Harvard-M.I.T. Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139
Philip Seifert
Affiliation:
Harvard-M.I.T. Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139
Adam Groothius
Affiliation:
Harvard-M.I.T. Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139
Danielle Bornstein
Affiliation:
Harvard-M.I.T. Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139
Campbell Rogers
Affiliation:
Harvard-M.I.T. Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139
Elazer R. Edelman
Affiliation:
Harvard-M.I.T. Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139
Get access

Abstract

Endovascular stents can be altered to improve radioopacity by applying a gold coating. We examined the vascular response in porcine coronary arteries to implantation of 9 mm NIR® stents that were either left intact, gold-coated, or heat-treated following gold coating. Our results show that while gold coating exacerbates neointimal hyperplasia and the inflammatory response, heat treatment removes this negative effect. Heat treatment was shown to increase the diffusion at the gold-steel interface and reduce the surface roughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kjelsberg, M., Seifert, P., Edelman, E., and Rogers, C., J Invasive Cardiol 10, 142150 (1998).Google Scholar
2. Kastrati, A., Schomig, A., Dirschinger, J., Mehilli, J., Welser, N. von, Pache, J., Schuhlen, H., Schilling, T., Schmitt, C., and Neumann, F., Circulation 101, 24782483 (2000).Google Scholar
3. Edelman, E., Seifert, P., Groothius, A., Morss, A., Bornstein, D., and Rogers, C., Circulation 103, 429–34 (2001).Google Scholar
4. Rogers, C., Welt, F., Karnovsky, M., and Edelman, E., Arterioscler Thromb Vasc Biol 16, 13121318 (1996).Google Scholar
5. Garasic, J., Edelman, E., Squire, J., Seifert, P., Williams, M., and Rogers, C., Circulation 101, 812818 (2000).Google Scholar
6. Schwartz, R., Huber, K., Murphy, J., Edwards, W., Camrud, A., Vlietstra, R., and Holmes, D., J. Am. Coll. Cardiol. 19, 267274 (1992).Google Scholar
7. Hehrlein, C., Zimmerman, M., Metz, J., Ensinger, W., and Kubler, W., Coron Artery Dis 6, 581586 (1995).Google Scholar
8. Palmaz, J., Benson, A., and Sprague, E., JVIR 10, 439444 (1999).Google Scholar
9. Tarnok, A., Mahnke, A., Muller, M., and Zotz, R., Cytometry 38, 3039 (1999).Google Scholar
10. Steinemann, S., Injury 27 (suppl. 3), SC16–SC22 (1996).Google Scholar