Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T22:57:08.209Z Has data issue: false hasContentIssue false

Bioactive organic-inorganic hybrid aerogels

Published online by Cambridge University Press:  01 February 2011

Luis Esquivias
Affiliation:
Departamento de Física de la Materia Condensada, Facultad de Ciencias, UCA. Puerto Real 11510. Cádiz, Spain.
Víctor Morales-Flórez
Affiliation:
Departamento de Física de la Materia Condensada, Facultad de Ciencias, UCA. Puerto Real 11510. Cádiz, Spain.
Manuel Piñero
Affiliation:
Departamento de Física Aplicada, CASEM, UCA
Nicolás de la Rosa-Fox
Affiliation:
Departamento de Física de la Materia Condensada, Facultad de Ciencias, UCA. Puerto Real 11510. Cádiz, Spain.
Julio Ramírez
Affiliation:
Departamento de Química Inorgánica. Facultad de Químicas. UCM.
José González-Calbet
Affiliation:
Departamento de Química Inorgánica. Facultad de Químicas. UCM.
Antonio Salinas
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica. Facultad de Farmacia. UCM
María Vallet-Regí
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica. Facultad de Farmacia. UCM
Get access

Abstract

We have prepared organic-inorganic hybrid materials (OIHM), incorporating an organic phase in the inorganic precursor sol, using high power ultrasound for assistance with agitation. A sono-ormosil results after gelation. Colloidal silica particles have been added to these hybrids to enable network porous volume and pore radius to be tailored to specific requirements. Finally, in vitro bioactivity of this material has been promoted by adding calcium to the initial sol. The structure and bioactivity of these materials have been subjected to preliminary study, including their mechanical behaviour. These materials have a very fine structure especially after colloidal silica particles have been included. When immersed in a solution simulating blood plasma, they are bioactive, and the sample with colloid particles presents a better behaviour in vitro

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hench, L. L. J. Am. Ceram. Soc. 81 (1998) 1705.Google Scholar
2. Kamitahara, M., Kawashita, M., Miyata, N., Kokubo, T. and Nakamura, T., J. Mat. Sci.: Mat. In Med. 13 (2002) 10151020 Google Scholar
3. Esquivias, L., Rodríguez-Ortega, J., Barrera-Solano, C. and de la Rosa-Fox, N., J. Non-Cryst-Solids, 225 (1998) 239243.Google Scholar
4. Barret, E.P., Joyner, L.G., Halenda, P.P., J. Am. Chem Soc. 73, (1951) 373.Google Scholar
5. Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamura, Y. J. Biomed. Mater. Res. 24 (1990), 721.Google Scholar
6. Porod, G., Kolloid Z., 124 83114 (1951)Google Scholar
7. LeGeros, R. Z. Calcium phosphate in oral biology and medicine. In Monographs in Oral Science, Myers, H. M., Ed.; Karger: Zurich, 1991.Google Scholar
8. Elliot, J. C. Structure and Chemistry of the Apatites and other Calcium Orthophosphates, Studies in Inorganic Chemistry 18, Elsevier, Ed.; Amsterdam, 1994.Google Scholar
9. Vallet-Regí, M., J. Chem. Soc., Dalton Trans, 2001, 97.Google Scholar
10. Kokubo, T., An. Quim. Int. Ed. 1997 93, S49.Google Scholar