Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:22:32.306Z Has data issue: false hasContentIssue false

Bimodal size distribution of gold nanoparticles in aqueous solution during pulsed laser irradiation

Published online by Cambridge University Press:  01 February 2011

Susumu Inasawa
Affiliation:
Department of Chemical System Engineering, School of Engineering, The University of Tokyo Hongo 7–3–1, Bunkyo-ku, Tokyo, 113–8656, Japan
Masakazu Sugiyama
Affiliation:
Department of Electronic Engineering, School of Engineering, The University of Tokyo Hongo 7–3–1, Bunkyo-ku, Tokyo, 113–8656, Japan
Yukio Yamaguchi
Affiliation:
Department of Electronic Engineering, School of Engineering, The University of Tokyo Hongo 7–3–1, Bunkyo-ku, Tokyo, 113–8656, Japan
Get access

Abstract

Size distribution of gold nanoparticles in aqueous solution during pulsed laser irradiation (Nd:YAG laser, wavelength of 355 nm, pulse width 30 ps) is observed by transmission electron microscope (TEM). Interestingly, we observed that a single peak distribution of gold nanoparticles sizes (initially centered around 25 nm) is gradually turned into a two-peaks one upon laser radiation. Initial particles reduced their sizes and smaller particles were formed, resulting in the bimodal size distribution. In these bimodal size distributions, two peaks are observed, one is at 6 nm, and another is at 24 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alvarez, M. M., Khoury, J. T., Schaaff, T. G., Shafigullin, M. N., Vezmar, I., Whetten, R. L., J. Phys. Chem. B 101, 3706 (1997).Google Scholar
2. Link, S., El-Sayed, M. A., J. Phys. Chem. B 103, 8410 (1999).Google Scholar
3. Link, S., Burda, C., Mohamad, M. B., Nikoobakht, B., El-Sayed, M. A., Phys. Rev. B 61, 6086 (2000).Google Scholar
4. Logunov, S. L., Ahmadi, T. S., El-Sayed, M. A., Khoury, J. T., Whetten, R. L., J. Phys. Chem. B 101, 3713 (1997).Google Scholar
5. Hodak, J. H., Martini, I., Hartland, G. V., J. Phys. Chem. B 102, 6958 (1998).Google Scholar
6. Shin, H. H., Hwang, I. W., Hwang, Y. N., Kim, D., Han, S. H., Lee, J. S., Cho, G., J. Phys. Chem. B 107, 4699 (2003).Google Scholar
7. Hirose, T., Omatsu, T., Sugiyama, M., Inasawa, S., Koda, S., Chem. Phys. Lett. 390, 166 (2004)Google Scholar
8. Takami, A., Kurita, H., Koda, S., J. Phys. Chem. B 103, 1226 (1999).Google Scholar
9. Kamat, P. V., Flumiani, M., Hartland, G. V., J. Phys. Chem. B 102, 3123 (1998).Google Scholar
10. Inasawa, S., Sugiyama, M. and Koda, S., J. Jpn. Appl. Phys. 42, 6753 (2003).Google Scholar
11. Sugiyama, M., Inasawa, S., Koda, S., Hirose, T., Yonekawa, T., Omatsu, T., Takami, A, Appl. Phys. Lett. 79, 1529 (2001).Google Scholar
12. Kreibig, U., Vollmer, M., Opticacl Properties of Metal Clusters (Springer, Berlin, 1995).Google Scholar
13. Link, S., El-Sayed, M. A., J. Chem. Phys. 114, 2362 (2001).Google Scholar