Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:46:35.531Z Has data issue: false hasContentIssue false

Bi1-xSbx Alloy Thin Film and Superlattice Thermoelectrics

Published online by Cambridge University Press:  10 February 2011

S. Cho
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
I. Vurgaftman
Affiliation:
Code 5613, Naval Research Laboratory, Washington, D.C. 20375-5338
A. B. Shick
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
A. DiVenere
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
Y. Kim
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
S. J. Youn
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
C. A. Hoffman
Affiliation:
Code 5613, Naval Research Laboratory, Washington, D.C. 20375-5338
G. K. L. Wong
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
A. J. Freeman
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
J. R. Meyer
Affiliation:
Code 5613, Naval Research Laboratory, Washington, D.C. 20375-5338
J. B. Ketterson
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
Get access

Abstract

We have grown Bi1-xSbx alloy thin films on CdTe(111)B over a wide range of Sb concentrations (0≤x≤0.183) using MBE. We have observed several differences with the bulk system. The 3.5 and 5.1% Sb alloys show semiconducting behavior, and the Sb concentration with the maximum bandgap is shifted to a lower Sb concentration, from 15% in bulk to 9%. The power factor S2/ρ (where S is thermoelectric power(TEP) and ρ electrical resistivity) peaks at a significantly higher temperature (250K) than previously reported for the bulk alloy (80K). The magnetotransport properties of Bi1-x,Sbx thin films (x = 0, 0.09, and 0.16) and Bi/CdTe superlattices have been determined by applying the Quantitative Mobility Spectrum Analysis (QMSA) and multicarrier fitting to the magneticfield- dependent resistivities and Hall coefficients, using algorithms which account for the strong anisotropy of the mobilities. The calculated S values are in good agreement with experimental results. The structural stability of bulk Bi is studied using the local density linear muffin-tin orbital method. It is shown that the internal displacement changes the Bi electronic structure from a metal to a semimetal, in qualitative agreement with a Jones-Peierls-type transition. The total energy is calculated to have a double well dependence on the internal displacement, and to provide a stabilization of the trigonal phase. We show that an increase of the trigonal shear angle leads to a semimetal-semiconductor transition in Bi.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jain, A.L., Phys. Rev. 114, 1518 (1959).Google Scholar
2. Golin, S., Phys. Rev. 176, 830 (1968).CrossRefGoogle Scholar
3. Tichovolski, E. J. and Mavroides, J. G., Solid State Commun. 7, 927 (1969).CrossRefGoogle Scholar
4. Mironova, G. A., Sudakaova, M. V., and Ponomarev, Ta. G., Sov. Phys. Solid State 22, 2124 (1980).Google Scholar
5. Oelgart, G., Schneider, G., Kraak, W., and Herrmann, R., Phys. Stat. Sol. (b) 74, K75 (1976).Google Scholar
6. Yim, W. M. and Amith, A., Solid-State Electron. 15, 1141 (1972).CrossRefGoogle Scholar
7. Lenoir, B., Cassart, M., Michenaud, J.-P., Scherrer, H., and Scherrer, S., J. Phys. Chem. Solids 57, 89 (1996).CrossRefGoogle Scholar
8. Brown, D. M. and Silverman, S. J., Phys. Rev. 136, A290 (1964).Google Scholar
9. Alekseeva, V. G., Zaets, N. F., Kudryashov, A. A., and Ormont, A. B., Sov. Phys. Semocond. 10, 1332 (1976).Google Scholar
10. Brandt, N. B. and Svistova, E. A., J. Low Temp. Phys. 2, 1 (1970).CrossRefGoogle Scholar
11. Brandt, N. B. and Ponomarev, Ya. G., Soy. Phys. JETP 28, 635 (1969).Google Scholar
12. Brandt, N. B., Chudinov, S. M., and Karavaev, V. G., Soy. Phys. JETP 34, 368 (1972).Google Scholar
13. Brandt, N. B., Dittmann, Kh., and Ponomarev, Ya. G., Soy. Phys. Solid State 13, 2408 (1972).Google Scholar
14. Mendez, E. E., Misu, A., and Dresselhaus, M. S., Phys. Rev. B 24, 639 (1981).CrossRefGoogle Scholar
15. Lu, M., Zieve, R. J., van Hulst, A., Jaeger, H. M., Rosenbaum, T. F., and Radelaar, S., Phys. Rev. B 53, 1609 (1996).CrossRefGoogle Scholar
16. Morelli, D. T., Partin, D. L., and Heremans, J., Semicon. Sci. Technol. 5, S257 (1990).CrossRefGoogle Scholar
17. Brown, D. M. and Silverman, S. J., Phys. Rev. 136, A290(1964).CrossRefGoogle Scholar
18. Vurgaftman, I., Meyer, J. R., Hoffman, C. A., Cho, S., Ketterson, J. B., Faraone, L., Antoszewski, J., and Lindemuth, J. R., submitted to J. Electron. Mater.Google Scholar
19. Cho, S., DiVenere, A., Wong, G. K., Ketterson, J. B., and Meyer, J. R., J. Vac. Sci. Technol. A (in press).Google Scholar
20. Cho, S., DiVenere, A., Wong, G. K., Ketterson, J. B., and Meyer, J. R., (submitted to Phys. Rev. B).Google Scholar
21. Antoszewski, J., Seymour, D. J., Faraone, L., Meyer, J. R., and Hoffman, C. A., J. Electron. Mater. 24, 1255 (1995).CrossRefGoogle Scholar
22. Meyer, J. R., Hoffman, C. A., Antoszewski, J., and Faraone, L., J. Appl. Phys. 81, 709 (1997).CrossRefGoogle Scholar
23. Saunders, G. A. and Simengen, Z., J. Phys. F 2, 972 (1972).CrossRefGoogle Scholar
24. Abeles, B. and Meiboom, S., Phys. Rev. 101, 544 (1956).CrossRefGoogle Scholar
25. Michenaud, J.-P. and Issi, J.-P., J. Phys. C 5, 3061 (1972); I. F. I. Mikhail, O. P. Hansen, and H. Nielsen, J. Phys. C 13, 1697 1980).CrossRefGoogle Scholar
26. Cho, S., DiVenere, A., Wong, G. K., Ketterson, J. B., Meyer, J. R. and Hoffman, C. A., Solid State Commun. 102, 673 (1997).CrossRefGoogle Scholar
27. Yazaki, T. and Abe, Y., J. Phys. Soc. Japan 24, 290 (1968).CrossRefGoogle Scholar
28. Hoffman, C. A., Meyer, J. R., Bartoli, F. J., DiVenere, A., Yi, X. J., Hou, C. L., Wang, H. C., Ketterson, J. B., and Wong, G. K., Phys. Rev. B 48, 11 431 (1993).Google Scholar
29. Komnik, Yu. F. et al., Zh. Eksp. Teor. Fiz. 60, 669 (1971) [Sov. Phys. JETP 33, 364 (1971)].Google Scholar
30. Savrasov, S.Y., Phys.Rev. B 54, 16470 (1996).CrossRefGoogle Scholar
31. Golin, S., Phys. Rev. 166, 643 (1968).CrossRefGoogle Scholar
32. Gonze, X., Michenaud, J.-P., Vigneron, J.-P., Phys. Rev. B 41, 11827 (1990).CrossRefGoogle Scholar
33. Liu, Y. and Allen, R., Phys.Rev.B 52, 1566 (1995).Google Scholar
34. Jozequel, G. et al., Phys. Rev. B 56, 6620 (1997).CrossRefGoogle Scholar
35. Chang, K. J. and Cohen, M. L., Phys. Rev. B 33, 7371 (1986).Google Scholar
36. Cucka, P. and Barrett, C. S., Acta Cryst. 16, 461 (1962).Google Scholar