Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T22:12:48.243Z Has data issue: false hasContentIssue false

Beyond-Mean-Field Treatments of Island Formation during Submonolayer Deposition: Island Size Distributions for Large Critical Sizes

Published online by Cambridge University Press:  01 February 2011

Maozhi Li
Affiliation:
Institute of Physical Research & Technology Ames Laboratory, Iowa State University, Ames Iowa 50011
Maria C. Bartelt
Affiliation:
Department of Chemistry and Materials Science, Lawrence Livermore National Laboratory, Livermore, California94550
J. W. Evans
Affiliation:
Department of Mathematics Ames Laboratory, Iowa State University, Ames Iowa 50011
Get access

Abstract

Kinetic Monte Carlo (KMC) simulation of atomistic models reveals the failure of mean-field treatments of the island size distribution (ISD) for islands formed by homogeneous nucleation during submonolayer deposition on perfect surfaces. KMC also facilitates analysis of scaling properties of the ISD, although here some misperceptions persist which we attempt to clarify. However, KMC becomes inefficient for highly reversible island formation (e.g., for large values of a critical size, i, above which islands are stable) due to the high density of diffusing adatoms on the surface. This reduced efficiency is quantified here with results for CPU time versus i. This feature has motivated development of alternative beyond-mean-field coarse-grained approaches which should be more efficient for large i. We provide results for the ISD for a range of i = 1, 2, 3, and 6 using one such approach, a stochastic geometry-based simulation (GBS) strategy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Venables, J.A., Philos. Mag. 27, 693 (1973).Google Scholar
2. Bartelt, M.C. and Evans, J.W., Phys. Rev. B 46, 12675 (1992).Google Scholar
3. Bartelt, M.C. and Evans, J.W., Surf. Sci. 298, 421 (1993).Google Scholar
4. Bales, G.S. and Chrzan, C.Z., Phys. Rev. B 50, 6057 (1994).Google Scholar
5. Venables, J.A. and Ball, D.J., Proc. R. Soc. London Ser. A 322, 331 (1971).Google Scholar
6. Mulheran, P.A. and Blackman, J.A., Phys. Rev. B 53, 10261 (1996).Google Scholar
7. Bartelt, M.C. and Evans, J.W., Phys. Rev. B 54, R17359 (1996).Google Scholar
8. Bartelt, M.C., Schmid, A.K., Evans, J.W., and Hwang, R.Q., Phys. Rev. Lett. 81, 1901 (1998).Google Scholar
9. Bartelt, M.C., Stoldt, C.R., Jenks, C.J., Thiel, P.A., and Evans, J.W., Phys. Rev. B 59, 3125 (1999).Google Scholar
10. Evans, J.W. and Bartelt, M.C., in “Morphological Organization in Epitaxial Growth and Removal”, Zhang, Z. and Lagally, M.G., ed.s (World Scientific, Singapore, 1998), p.50.Google Scholar
11. Mulheran, P.A. and Robbie, D.A., Europhys. Lett. 49, 617 (2000).Google Scholar
12. Amar, J.G., Popescu, M.N., and Family., F., Phys. Rev. Lett. 14, 3092 (2001).Google Scholar
13. Evans, J.W. and Bartelt, M.C., Phys. Rev. B 66, 235410 (2002).Google Scholar
14. Ratsch., C., Gyure, M.F., Caflisch, R.E., Gibou, F.G., Petersen., M., Kang., M., Garcia., J., and Vvedensky, D.D., Phys. Rev. B 65, 195403 (2002).Google Scholar
15. Li., M., Bartelt, M.C., and Evans, J.W., Phys. Rev. B 68, 121401R (2003).Google Scholar
16. Madreoli., L., Neugebauer., J., Kunert., R., and Scholl., E., Phys. Rev. B 68, 155429 (2003).Google Scholar
17. Russo., G., Sander, L.M., and Smereka., P., Phys. Rev. B 69, 121406 (2004).Google Scholar
18. Evans, J.W. and Bartelt, M.C., Phys. Rev. B 63, 235408 (2001).Google Scholar
19. Vvedensky, D.D., Phys. Rev. B 62, 15435 (2000).Google Scholar
20. Li, M. and Evans, J.W., Surf. Sci. 546, 127 (2003).Google Scholar
21. Li, M. and Evans, J.W., SIAM Multiscale Modeling Sim. 3, in press (2005).Google Scholar