Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:39:04.049Z Has data issue: false hasContentIssue false

Between Quantum and Classical: Evolution of Electron Magnetic Resonance with Growth of a Spin System Size

Published online by Cambridge University Press:  09 January 2014

Brittany Bates
Affiliation:
Norfolk State University, Norfolk, Virginia, USA
James Hilton
Affiliation:
Cornell University, Ithaca, New York, USA
Carl Bonner
Affiliation:
Norfolk State University, Norfolk, Virginia, USA
Natalia Noginova
Affiliation:
Norfolk State University, Norfolk, Virginia, USA
Get access

Abstract

Systems with a single or several coupled electron spins are commonly described with the quantum approach while ferromagnetic domains with millions of coupled spins are classical systems. Large spin clusters and superparamagnetic nanoparticles contain hundreds of coupled electron spins, and are on the boundary between classical and quantum behavior. Electron magnetic resonance observed in ultra-fine iron oxide nanoparticles (∼ 5 nm size) reveals several features which are typical for paramagnetic spins and absent in macroscopic systems, including multiple quantum transitions observed at H0/n, where n = 2, 3, 4 and H0 is the field of the main resonance. In order to better understand the transition from quantum to classical behavior and magnetization dynamics at the nanoscale, we study the evolution of the EMR signal with increase of the particle size in suspensions of magnetite nanoparticles. The experimental data are compared with numerical simulations.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Noginova, N., Bah, R., Bitok, D., Atsarkin, V.A., Demidov, V.V., Gudenko, S.V., J. Phys: Condens. Matter. 17, 1259 (2005).Google Scholar
Raikher, Yu. L., Stepanov, V. I., Phys. Rev. B 50, 6250 (1994); J. Magn. Magn. Mater. 149, 34(1995).CrossRefGoogle Scholar
Dormann, J.L., D’Orazio, F., Lucari, F., Tronc, E., Prené, P., Jolivet, J.P., Fiorani, D., Cherkaoui, R., Noguès, M., Phys. Rev. B 53, 14291 (1996).CrossRefGoogle Scholar
de Biasi, E., Ramos, C.A., Zysler, R.D., J. Magn. Magn. Mater. 262, 235 (2003).CrossRefGoogle Scholar
Dimitrov, D.A. and Wysin, G.M., Phys. Rev. B 54, 9237 (1996).CrossRefGoogle Scholar
Wilson, A., Yang, E.-C., Hendrickson, D. N., Hill, S., Polyhedron 26 2065 (2007)CrossRefGoogle Scholar
Garanin, D. A., Phys. Rev. B 78, 144413 (2008).CrossRefGoogle Scholar
Noginova, N., Chen, F., Weaver, T., Giannelis, E. P., Bourlinos, A. B., Atsarkin, V. A., J. Phys.: Condens. Matter 19, 246208 (2007).Google Scholar
Noginov, M.M., Noginova, N., Amponsah, O., Bah, R., Rakhimov, R., Atsarkin, V.A., J. Magn. Magn. Mat. 320, 2228 (2008).CrossRefGoogle Scholar
Noginova, N., Weaver, T., Giannelis, E.P., Bourlinos, A.B., Atsarkin, V.A., Demidov, V.V., Phys. Rev. B 77, 014403 (2008).CrossRefGoogle Scholar
Fittipaldi, M., Sorace, L., Barra, A.-L., Sangregorio, C., Sessolia, R. and Gatteschia, D., Phys. Chem. Chem. Phys. 11, 6555 (2009).CrossRefGoogle Scholar
Gatteschi, D., Fittipaldi, M., Sangregorio, C., Sorace, L., Angewandte Chem. 51, 4792 (2012).CrossRefGoogle Scholar
Abragam, A. and Bleaney, B., Electron Paramagnetic Resonance of Transition Ion, (Clarendon, Oxford, 1970), Chapt. 9.Google Scholar
Abragam, A., The principles of nuclear magnetism (Clarendon Press, Oxford, 1961), Chapter IV.Google Scholar
Noginova, N., Atsarkin, V.A., to be published.Google Scholar
Tiberkevich, V, Slavin, A, Phys. Rev. B 75, 014440 (2007).CrossRefGoogle Scholar