No CrossRef data available.
Article contents
Benefits of Rapid Solidification Processing of Modified LaNi5 Alloys by High Pressure Gas Atomization for Battery Applications
Published online by Cambridge University Press: 10 February 2011
Abstract
A high pressure gas atomization approach to rapid solidification has been employed to investigate simplified processing of Sn modified LaNi5 powders that can be used for advanced Ni/metal hydride (Ni/MH) batteries. The current industrial practice involves casting large ingots followed by annealing and grinding and utilizes a complex and costly alloy design. This investigation is an attempt to produce powders for battery cathode fabrication that can be used in an as-atomized condition without annealing or grinding. Both Ar and He atomization gas were tried to investigate rapid solidification effects. Sn alloy additions were tested to promote subambient pressure absorption/desorption of hydrogen at ambient temperature. The resulting fine, spherical powders were subject to microstructural analysis, hydrogen gas cycling, and annealing experiments to evaluate suitability for Ni/MH battery applications. The results demonstrate that a brief anneal is required to homogenize the as-solidified microstructure of both Ar and He atomized powders and to achieve a suitable hydrogen absorption behavior. The Sn addition also appears to suppress cracking during hydrogen gas phase cycling in particles smaller than about 25μm. These results suggest that direct powder processing of a LaNi5−xSnx alloy has potential application in rechargeable Ni/MH batteries.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998