Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:43:56.708Z Has data issue: false hasContentIssue false

Behavior of LiMn2O4 Single Crystals as Battery Cathodes

Published online by Cambridge University Press:  01 February 2011

María Ángeles Monge
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain.
José Manuel Amarilla
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain.
Enrique Gutiérrez-Puebla
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain.
Juan Antonio Campa
Affiliation:
Facultad de Ciencias Geológicas, UCM, 28040 Madrid, Spain.
Isidoro Rasines
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain.
Get access

Abstract

This paper deals with: i) the growth of LiMn2O4 crystals by electrocrystallisation; ii) the response of these crystals in lithium cells; and iii) a method to follow their structural and morphological changes while working as electrodes. The defects present in LiMn2O4 crystals are determined after refining the occupation at every site of the spinel structure by single-crystal Xray diffraction analyses, which lead to define two possible paths for the process of Li deinsertion-insertion. It is shown how the crystals studied follow one of these paths during cycling of the battery by virtue of a dynamic mechanism consisting in Mn migrations cooperatively induced by Li insertion and extraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akimoto, J., Takahashi, Y., Gotoh, Y., and Mizura, S., Chem. Mater. 12, 3246 (2000).Google Scholar
2. Björk, H., Gustafsson, T., and Thomas, J.O., Electrochem. Comm. 3, 187 (2001).Google Scholar
3. Campa, J. A., Velez, M., Cascales, C., Gutiérrez-Puebla, E., Monge, M.A., Rasines, I., and Ruíz-Valero, C., J. Cryst. Growth, 12, 87 (1994).Google Scholar
4. Yamada, A., Tanaka, M., Mater. Res. Bull. 30, 715 (1995).Google Scholar
5. Monge, M.A., Gutiérrez-Puebla, E., Rasines, I., and Campa, J.A. in Materials Science of Novel-Oxide-Based Electronics, edited by Ginley, D.S., Perkins, J.D., Kawazoe, H., Newns, D.M., and Kozyrev, A.B. (Mater. Res. Soc. Proc. 623, Warrendale, PA, 2000), pp. 5662.Google Scholar
6. Ohzuku, T., Kitagawa, M., and Hirai, T., J. Electrochem. Soc. 137, 769 (1990).Google Scholar
7. Gao, Y., Y. and Dhan, J.R., J. Electrochem. Soc. 143, 100 (1996).Google Scholar
8. Palacin, M.R., Chabre, Y., Dupont, L., Hervieu, M., Strobel, P., Rousse, G., Masquelier, C., Anne, M., Amatucci, G.G., and Tarascon, J.M., J. Electrochem. Soc. 147, 845 (2000).Google Scholar
9. Geller, S., Acta Crystall. B 27, 821 (1971).Google Scholar
10. Garrido, J., Compt. Rend. Hebdom. Seanc. Acad. Sci. Paris 200, 69 (1935).Google Scholar
11. Reed, J., Ceder, G., and Ven, A. van der, Electrochem. Solid State Lett. 4, A78 (2001).Google Scholar