Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:43:41.508Z Has data issue: false hasContentIssue false

Beam Assisted Atomic Layer Controlled Epitaxy and Etching of GaAs

Published online by Cambridge University Press:  16 February 2011

T. Meguro
Affiliation:
RIKEN (The Institute of Physical and Chemical Research), Hirosawa, Wako, Saltama 351-01, Japan
Y. Aoyagi
Affiliation:
RIKEN (The Institute of Physical and Chemical Research), Hirosawa, Wako, Saltama 351-01, Japan
Get access

Abstract

Atomic layer epitaxy (ALE) using laser irradiation and digital etching of GaAs are described herein.

Epitaxy: We have succeeded in the laser-assisted ALE (laser-ALE) of GaAs using visible wavelength Art laser irradiation and an alkylgallium source. Visible wavelength photon irradiation induces surface decomposition but not volume decomposition of alkylmetal molecule source gases. ALE is realized by the enhancement of decomposition of alkylgallium molecules only on the As-terminated surface but not on the Ga-terminated surface. This site-selectivity of alkylgallium decomposition is induced by the optical absorption band broadening, which is due to the chemisorption of alkylgallium at the As-terminated surface.

Etching: In ditigal etching, etchant gas pulses and an energetic beam sequentially impinge onto the substrate surface. In the Ar+/Cl2 system, the etch rate is found to be independent of both Cl2flux and Ar+ beam density, and the etch rate saturates at a level below one monolayer per cycle. By using Cl radicals as etchants instead of Cl2, the self-limited etching characteristics of digital etching are obtained within both the Ar+ incidence time and Cl feed time of the etching cycle.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Suntola, T. and Anston, J., Finnish patent no. 52359 (1974); US patent no. 4058430 (1977): T. Suntola, Extended Abstracts of International Conference on Solid State Devices and Materials, Kobe, 1984 (Publication Office Business Center for Academic Societies Japan, Tokyo, 1984) p. 647.Google Scholar
2) For example, Proceedings of 1st International Symposium on Atomic Layer Epitaxy, Helsinki, 1990, edited by Niinistö, L. (Act. Polytechn. Scand. Ch195 (1990)): Atomic Layer Epitaxy, edited by T. Suntola and M. Simpson, (Blackie, Glasgow, 1990): Extended Abstracts of 22th (1990 International) Conference on Solid State Devices and Materials, Symposium D (Business Center for Academic Societies Japan, Tokyo, 1990).Google Scholar
3) Doi, A., Aoyagi, Y. and Namba, S., Appl. Phys. Lett. 48,1787 (1986).Google Scholar
4) Doi, A., Aoyagi, Y. and Namba, S., Appl. Phys. Lett. 49,785 (1986).Google Scholar
5) Aoyagi, Y., Doi, A., Iwai, S. and Namba, S., J. Vac. Sci. Technol. B5, 1460 (1987).CrossRefGoogle Scholar
6) Iwai, S., Doi, A., Aoyagi, Y. and Namba, S., Inst. Phys. Conf. Ser. 91,191 (1988).Google Scholar
7) Doi, A., Iwai, S., Meguro, T. and Namba, S., Jpn. J. Appl. Phys. 27, 795 (1988).CrossRefGoogle Scholar
8) Iwai, S., Meguro, T., Doi, A., Aoyagi, Y. and Namba, S., Thin Solid Films 163,405 (1988).Google Scholar
9) Meguro, T., Suzuki, T., Ozaki, K., Okano, Y., Hirata, A., Yamamoto, Y., Iwai, S., Aoyagi, Y. and Namba, S., J. Cryst. Growth 93,190 (1988).CrossRefGoogle Scholar
10) Aoyagi, Y., Doi, A., Meguro, T., Iwai, S., Nagata, K. and Nonoyama, S., Chemtronics 4,117 (1989).Google Scholar
11) Meguro, T., Iwai, S., Aoyagi, Y., Ozaki, K., Yamamoto, Y., Suzuki, T., Okano, Y. and Hirata, A., J. Cryst. Growth 99, 540 (1990).Google Scholar
12) Iwai, S., Meguro, T. and Aoyagi, Y., J. Cryst. Growth 107, 136 (1991).Google Scholar
13) Aoyagi, Y., Meguro, T. and Iwai, S., Act. Polytechn. Scand. Ch195, 55 (1990).Google Scholar
14) Karam, N. H., Lin, H., Yoshida, I., EI-Masry, N. and Bedair, S. M., Appl. Phys. Lett. 52, 1114 (1988).Google Scholar
15) Karam, N. H., Lin, H., Yoshida, I., Jiang, B. -L. and Bedair, S. M., J. Cryst. Growth 93, 254 (1988).Google Scholar
16) Karam, N. H., Lin, H., Yoshida, I. and Bedair, S. M., Appl. Phys. Lett. 53, 767 (1988).Google Scholar
17) DenBaars, S. P. and Dapkus, P. D., J. Cryst. Growth 98,195 (1989).CrossRefGoogle Scholar
18) DenBaars, S. P., Dapkus, P. D., Osinski, J. S., Zandiand, M., Beyler, C. A. and Dzurko, K. M., Inst. Phys. Conf. Ser. 96, 89 (1989).Google Scholar
19) Maki, P. A. and Ehrlich, D. J., Appl. Phys. Lett. 55, 91 (1989).Google Scholar
20) Meguro, T., Hamagaki, M., Modaressi, S., Hara, T., Aoyagi, Y., Ishii, M. and Yamamoto, Y., Appl. Phys. Lett. 56,1552 (1990).Google Scholar
21) Meguro, T., Ishii, M., Hamagaki, M., Hara, T., Yamamoto, Y. and Aoyagi, Y., Act. Polytechn. Scand. Ch195,163 (1990).Google Scholar
22) Meguro, T., Ishii, M., Kodama, H., Hamagaki, M., Hara, T., Yamamoto, Y. and Aoyagi, Y., Jpn. J. Appl. Phys. 29, 2216 (1990).Google Scholar
23) Meguro, T., Ishii, M., Kodama, H., Hamagaki, M., Hara, T., Yamamoto, Y. and Aoyagi, Y., Extended Abstracts of 22th (1990 International) Conference on Solid State Devices and Materials, (Business Center for Academic Societies Japan, Tokyo, 1990), p. 893.Google Scholar
24) Horiike, Y., Tanaka, T., Nakano, M., Iseda, S., Sakaue, H., Nagata, A., Shindo, H., Miyazaki, S. and Hirose, M., J. Vac. Sci. Technol. A8, 1844 (1990).Google Scholar
25) Sakaue, H., Iseda, S., Asami, K., Yamamoto, J., Hirose, M. and Horiike, Y., Jpn. J. Appl. Phys. 29, 2648 (1990).CrossRefGoogle Scholar
26) Aoyagi, Y., Kanazawa, M., Doi, A., Iwai, S. and Namba, S., J. Appl. Phys. 60,3131 (1986).CrossRefGoogle Scholar
27) Kusano, J., Segawa, Y., Iwai, S., Aoyagi, Y. and Namba, S., Appl. Phys. Lett. 52,67 (1988).Google Scholar
28) Nagata, K., limura, Y., Aoyagi, Y., Namba, S. and Den, S., J. Cryst. Growth 95,142 (1989).Google Scholar
29) Kitahara, K., Ohtsuka, N. and Ozeki, M., J. Vac. Sci. Technol. B7, 700 (1989).Google Scholar
30) Sasaki, M., Kawakyu, Y. and Mashita, M., Jpn. J. Appl. Phys.,28, L131 (1989).Google Scholar
31) Tsuda, M., Oikawa, S., Morishita, M. and Mashita, M., Jpn. J. Appl. Phys. 26, L564 (1987).Google Scholar
32) Hara, T., Hamagaki, M., Sanda, A., Aoyagi, Y. and Namba, S., Jpn. J. Appl. Phys. 25, L252 (1986).Google Scholar
33) Yu, J. Z., Hara, T., Hamagaki, M., Yoshinaga, Y., Aoyagi, Y. and Namba, S.: J. Vac. Sci. Technol. B6,1626 (1988).Google Scholar
34) Yu, J. Z., Masui, N., Yuba, Y., Hara, T., Hamagaki, M., Aoyagi, Y., Gamo, K. and Namba, S., Jpn. J. Appl. Phys. 28, 2391 (1989).CrossRefGoogle Scholar
35) Asakawa, K. and Sugata, S., in Proceedings of Symposium of the International Engineering Congress ISIAT'83 (IEE of Japan, Tokyo, 1985) p. 759.Google Scholar
36) Supata, S. and Asakawa, K., IEE Jpn. Tech. Rep. EFM-84-6 (IEE of Japan, Tokyo, 1984).Google Scholar
37) Shimmura, K., Kawasaki, K., Tanaka, T., Nakamoto, I., Aoyagi, Y., Gamo, K. and Namba, S., Extended Abstracts (The 38th Spring Metting, 1991); The Japan Society of Applied Physics and Related Societies, p. 496.Google Scholar
38) Ishii, M. and Meguro, T., unpublished data.Google Scholar