Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:29:13.774Z Has data issue: false hasContentIssue false

Barium Potassium Bismuth Oxide Synthesis and Physical Properties

Published online by Cambridge University Press:  21 February 2011

K. C. Ott
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545.
M. F. Hundley
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545.
G. H. Kwei
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545.
M. P. Maley
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545.
M. E. McHenry
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545.
E. J. Peterson
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545.
J. D. Thompson
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545.
J. O. Willis
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545.
Get access

Abstract

A series of compounds Ba1−xKxBiO3 have been prepared and characterized over the range of compositions ranging from x = 0.3 to 0.5. A neutron powder diffraction analysis has been carried out for the composition x = 0.4 at room temperature and at 10 K. Examination of the superconducting properties as a function of x indicates superconductivity occurs over a narrow range of compositions close to x = 0.4, with Tc of 29 K. Specific heat measurements indicate conventional electron-phonon interactions may play a role in promoting superconductivity in Ba.6K.4BiO3. Magnetization loops and examination of the time dependent magnetization indicate that Ba.6K.4BiO3 has a low value of Jc due to very weak pinning.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mattheiss, L.F. et al, Phys. Rev. B37, 3745 (1988).Google Scholar
2. Cava, R. J. et al, Nature 332, 814 (1988).Google Scholar
3. Uemara, Y. J. et al, Nature 335, 151 (1988)Google Scholar
4. Sleight, A. W. et al, Solid St. Commun. 17, 27 (1975).Google Scholar
5. Hinks, D. G. et al, Nature 333, 836 (1988).Google Scholar
6. Hinks, D. G. et al, Physica C156, 477 (1988).Google Scholar
7. Schwedes, B. and Hoppe, R., Z. Anorg. Allg. Chem. 392, 97 (1972).Google Scholar
8. Hinks, D. G., presented at the DOE High Tc Information Exchange, Berkeley, CA, January 1989 (unpublished).Google Scholar
9. Cox, D. E. and Sleight, A. W., Solid State Commun. 19, 969 (1976).Google Scholar
10. Chaillout, C. et al, Solid State Commun. 65, 1363 (1988).Google Scholar
11. Schneemeyer, L. F. et al, Nature 335, 421 (1988).Google Scholar
12. Wignacourt, J. P. et al, Appl. Phys. Lett. 53, 1753 (1988).Google Scholar
13. Kwei, G. H. et al, Phys. Rev. B (submitted).Google Scholar
14. Luhman, T., in Treatise on Materials Science and Technology, edited by Luhman, T. and Pew-Hughes, D., (Academic Press, 1979, New York), vol.14, p. 256.Google Scholar
15. Hundley, M. F. et al, Solid State Commun. (submitted).Google Scholar
16. McHenry, M. E. et al, Phys. Rev. B32, xxx (1989) (in press).Google Scholar
17. McHenry, , et al, Phys. Rev. B39, 4784 (1989).Google Scholar
18. Yeshurun, Y.et al, Cryogenics 29, 259 (1989).Google Scholar