Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T14:40:26.886Z Has data issue: false hasContentIssue false

Band Structure and Effective Masses of Zn1-xMgxO

Published online by Cambridge University Press:  23 January 2013

Christian Franz
Affiliation:
I. Physikalisches Institut, Justus Liebig University, 35392 Giessen, Germany
Marcel Giar
Affiliation:
I. Physikalisches Institut, Justus Liebig University, 35392 Giessen, Germany
Markus Heinemann
Affiliation:
I. Physikalisches Institut, Justus Liebig University, 35392 Giessen, Germany
Michael Czerner
Affiliation:
I. Physikalisches Institut, Justus Liebig University, 35392 Giessen, Germany
Christian Heiliger
Affiliation:
I. Physikalisches Institut, Justus Liebig University, 35392 Giessen, Germany
Get access

Abstract

We analyze the influence of the Mg concentration on several important properties of the band structure of Zn1-xMgxO alloys in wurtzite structure using ab initio calculations. For this purpose, the band structure for finite concentrations is defined in terms of the Bloch spectral density, which can be calculated within the coherent potential approximation. We investigate the concentration dependence of the band gap and the crystal-field splitting of the valence bands. The effective electron and hole masses are determined by extending the effective mass model to finite concentrations. We compare our results with experimental results and other calculations.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y.: Appl. Phys. Lett. 72 (1998) 2466.CrossRefGoogle Scholar
Choi, Y., Kang, J., Hwang, D., and Park, S.: IEEE Trans. Electron Devices 57 (2010) 26.CrossRefGoogle Scholar
Koike, K., Hama, K., Nakashima, I., Takada, G., Ozaki, M., Ogata, K., Sasa, S., Inoue, M., and Yano, M.: Jpn. J. Appl. Phys. 43 (2004) L1372.CrossRefGoogle Scholar
Tsukazaki, A., Ohtomo, A., Kita, T., Ohno, Y., Ohno, H., and Kawasaki, M.: Science 315 (2007) 1388.CrossRefGoogle Scholar
Tsukazaki, A., Akasaka, S., Nakahara, K., Ohno, Y., Ohno, H., Maryenko, D., Ohtomo, A., and Kawasaki, M.: Nat. Mater. 9 (2010) 889.CrossRefGoogle Scholar
Furno, E., Chiaria, S., Penna, M., Bellotti, E., and Goano, M.: J. Electron. Mater. 39 (2010) 936.CrossRefGoogle Scholar
Faulkner, J. and Stocks, G.: Phys. Rev. B 21 (1980) 3222.CrossRefGoogle Scholar
Soven, P.: Phys. Rev. 156 (1967) 809.CrossRefGoogle Scholar
Authors and editors of the volumes III/17B-22A-41B: Zinc oxide (ZnO) band structure. Madelung, O., Roessler, U., Schulz, M. (ed.): The Landolt-Boernstein Database, www.springermaterials.com.Google Scholar
Goano, M., Bertazzi, F., Penna, M., and Bellotti, E.: J. Appl. Phys. 102 (2007) 083709.CrossRefGoogle Scholar
Schleife, A., Fuchs, F., Roedl, C., Furthmueller, J., and Bechstedt, F.: Phys. Status Solidi B 246 (2009) 2150.CrossRefGoogle Scholar
Chen, J., Shen, W., Chen, N., Qiu, D., and Wu, H.: J. Phys.: Condens. Matter 15 (2003) L475.Google Scholar
Schmidt, R., Rheinlaender, B., Schubert, M., Spemann, D., Butz, T., Lenzner, J., Kaidashev, E., Lorenz, M., Rahm, A., Semmelhack, H., Grundmann, M.: Appl. Phys. Lett. 82 (2003) 2260.CrossRefGoogle Scholar
Teng, C., Muth, J., Oezguer, Ue., Bergmann, M., Everitt, H., Sharma, A., Jin, C., and Narayan, J.: Appl. Phys. Lett. 76 (2000) 979.CrossRefGoogle Scholar
Cohen, D., Ruthe, K., and Barnett, S.: J. Appl. Phys. 96 (2004) 459.CrossRefGoogle Scholar
Lu, J., Fujita, S., Kawaharamura, T., Nishinaka, H., Kamada, Y., and Ohshima, T.: Appl. Phys. Lett. 89 (2006) 262107.CrossRefGoogle Scholar
Schleife, A., Eisenacher, M., Roedl, C., Fuchs, F., Furthmueller, J., and Bechstedt, F.: Phys. Rev. B 81 (2010) 245210.CrossRefGoogle Scholar
Schleife, A., Roedl, C., Furthmueller, J., and Bechstedt, F.: New J. Phys. 13 (2011) 085012.CrossRefGoogle Scholar
Maznichenko, I. V., Ernst, A., Bouhassoune, M., Henk, J., Daene, M., Lueders, M., Bruno, P., Hergert, W., Mertig, I., Szotek, Z., Temmerman, W. M.: Phys. Rev. B 80 (2009) 144101.CrossRefGoogle Scholar
Zabloudil, J., Hammerling, R., Szunyogh, L., and Weinberger, P.: Electron scattering in Solid Matter: A Theoretical and Computational Treatise (Springer, Berlin, 2005) Vol. 147 of Springer Series in Solid-State Sciences .CrossRefGoogle Scholar
Popescu, V. and Zunger, A.: Phys. Rev. Lett. 104 (2010) 236403.CrossRefGoogle Scholar
Heinemann, M., Giar, M., and Heiliger, C.: MRS Symp. Proc. 1201 (2009) H05.CrossRefGoogle Scholar
Karazhanov, S., Ravindran, P., Kjekhus, A., Fjellvag, H., Grossner, U., and Svensson, B.: J. Cryst. Growth 287 (2006) 162.CrossRefGoogle Scholar
Wu, C., Lu, Y., Shen, D., and Fan, X.: Chin. Sci. Bull. 55 (2010) 90.CrossRefGoogle Scholar
Xu, Q., Zhang, X., Fan, W., Li, S., and Xia, J.: Comput. Mater. Sci. 44 (2008) 72.CrossRefGoogle Scholar