Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T14:50:45.163Z Has data issue: false hasContentIssue false

Band Gap States in AlGaN/GaN Hetero-Interface Studied by Deep-Level Optical Spectroscopy

Published online by Cambridge University Press:  31 January 2011

Yoshitaka Nakano
Affiliation:
[email protected], Chubu University, Institute of Science and Technology Research, Kasugai, Japan
Keiji Nakamura
Affiliation:
[email protected], Chubu University, Kasugai, Aichi, Japan
Yoshihiro Irokawa
Affiliation:
[email protected], National Institute for Materials Science, Tsukuba, Ibaraki, Japan
Masaki Takeguchi
Affiliation:
[email protected], National Institute for Materials Science, Tsukuba, Ibaraki, Japan
Get access

Abstract

Planar Pt/AlGaN/GaN Schottky barrier diodes (SBDs) have been characterized by capacitance-voltage and capacitance deep-level optical spectroscopy measurements, compared to reference Pt/GaN:Si SBDs. Two specific deep levels are found to be located at ∼1.70 and ∼2.08 eV below the conduction band, which are clearly different from deep-level defects (Ec - 1.40, Ec - 2.64, and Ec - 2.90 eV) observed in the Pt/GaN:Si SBDs. From the diode bias dependence of the steady-state photocapacitance, these levels are believed to stem from a two-dimensional electron gas (2DEG) region at the AlGaN/GaN hetero-interface. In particular, the 1.70 eV level is likely to act as an efficient generation-recombination center of 2DEG carriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lu, W., Yang, J., Khan, M. A., and Adesida, I., IEEE Trans. Electron Devices 48, 581 (2001).Google Scholar
2 Eastman, L. F., Phys. Status Solidi (a) 176, 175 (1999).Google Scholar
3 Arulkumaran, S., Egawa, T., Ishikawa, H., and Jimbo, T., Appl. Phys. Lett. 81, 3073 (2002).Google Scholar
4 Klein, P. B., Binari, S. C., Ikossi, K., Wickenden, A. E., Koleske, D. D., and Henry, R. L., Appl. Phys. Lett. 79, 3527 (2001).Google Scholar
5 Zhang, A. P., Rowland, L. B., Kaminsky, E. B., Tilak, V., Grande, J. C., Teetsov, J., Vertiatchikh, A., and Eastman, L. F., J. Electron. Mater. 32, 388 (2003).Google Scholar
6 Fang, Z.-Q., Look, D. C., Kim, D. H., and Adesida, I., Appl. Phys. Lett. 87, 182115 (2005).Google Scholar
7 Armstrong, A., Chakraborty, A., Speck, J. S., DenBaars, S. P., Mishra, U. K., and Ringel, S. A., Appl. Phys. Lett. 89, 262116 (2006).Google Scholar
8 Nakano, Y., Morikawa, T., Ohwaki, T., and Taga, Y., Appl. Phys. Lett. 87, 232101, (2005).Google Scholar
9 Hierro, A., Kwon, D., Ringel, S. A., Hansen, M., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 76, 3064 (2000).Google Scholar
10 Armstrong, A., Arehart, A. R., and Ringel, S. A., J. Appl. Phys. 97, 083529 (2005).Google Scholar
11 Klein, P. B., Freitas, J. A. Jr, Binari, S. C., and Wickenden, A. E., Appl. Phys. Lett. 75, 4016 (1999).Google Scholar