Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:34:03.997Z Has data issue: false hasContentIssue false

A Bacterium's Sense of “Touch”

Published online by Cambridge University Press:  01 February 2011

Ruchirej Yongsunthon
Affiliation:
[email protected], Corning Incorporated, Molecular Spectroscopy and Separations, Corning Incorporated, SP-FR-01, R1S12L/23L, Corning, NY 14831, Corning, NY, 14831, United States
Brian H. Lower
Affiliation:
[email protected], Pacific Northwest National Laboratory, Richland, WA, 99352, United States
Vance G. Fowler
Affiliation:
[email protected], Duke University, Durham, NC, 27710, United States
Emily Alexander
Affiliation:
[email protected], Duke University, Durham, NC, 27710, United States
Steven K. Lower
Affiliation:
[email protected], Ohio State University, Columbus, OH, 43210, United States
Get access

Abstract

The sheer number of bacteria living on solid surfaces makes a compelling argument for the existence of surface sensing mechanisms. However, surface sensing abilities have not been widely studied in bacteria, because such abilities are not macroscopically observable in attached organisms with limited mobility. We report experimental evidence that attached Staphylococcus aureus cells recognize the steep gradient near their substrate interface and localize substrate-specific biomolecules toward that region. We present Atomic Force Microscopy-based affinity maps which reflect the cells' biochemical sensory response to the substrate and provide a unique view of regions indicating specific binding activity and bond resilience.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whitman, W. B., Coleman, D. C., and Wiebe, W. J., Proc. Natl. Acad. Sci. USA 95: 65786583 (1998)Google Scholar
2. Dusenbery, D. B., Biophys. J. 74: 22722277 (1998)Google Scholar
3. Thar, R., Kuhl, M., Proc. Natl. Acad. Sci. USA 100: 57485753 (2002)Google Scholar
4. Proctor, R. A, Mosher, D. F., and Olbrantz, P. J., J. Biol. Chem. 257: 1478814794 (1982)Google Scholar
5. Green, C., McDevitt, D., Francois, P., Vaudaux, P.E., Lew, D.P., and Foster, T.J. Molecul. Microbiol. 17: 11431152 (1995)Google Scholar
6. Foster, T. J. and Hook, M. (1998) Trends in Microbiology 6(12), 484488 (1998)Google Scholar
7. Lowy, F.D., New Engl. J. Med. 339:520532 (1998)Google Scholar
8. Cleveland, J. P., Manne, S., Bocek, D., Hansma, P. K., Rev. Sci. Instrum. 64(2): pp. 403405 (1992)Google Scholar
9. Lower, B. H., Yongsunthon, R., Vellano, F. P., Lower, S. K., J. Bacteriol. 187:21272137 (2005)Google Scholar
10. Vadillo-Rodriguez, V., Busscher, H. J., Norde, W., Vries, J. de, Dijkstra, R. J. B., Stokroos, I., van der Mei, H.C., Appl. Environ. Microb. 70: 54415446 (2004)Google Scholar
11. Camesano, T. A., Natan, M. J., Logan, B. E., Langmuir 16(10) 45634572 (2000)Google Scholar