Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T19:08:37.387Z Has data issue: false hasContentIssue false

Avoiding Ceramic Problems by the Use of Chemical Techniques

Published online by Cambridge University Press:  15 February 2011

Peter E. D. Morgan*
Affiliation:
Rockwell International Science Center, Thousand Oaks, California 91360
Get access

Extract

As the title of this meeting suggests, a paradigm change is underway in the ceramic community; methods of synthesis and use of ceramic powders are being hurriedly reappraised. The imperative for change was all in place by an important meeting that took place in 1977 [1].

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Processing of Crystalline Ceramics, 14th University Conference, Eds. Palmour, H. III, Davis, R. F., Hare, I. M., Plenum Press (1978).Google Scholar
2. Lange, F. F., “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc. 67, 83 (1984).CrossRefGoogle Scholar
3. Greskovitch, C. and Lay, K. W., “Grain Growth in Very Porous Al2O3 Compacts,” J. Am. Ceram. Soc. 55, 142 (1972).Google Scholar
4. Li, M. Q. and Messing, G. L., “Chloride Salt Effects on the Decomposition of Dolomite,” Thermochim. Acta. 68, 1 (1983).Google Scholar
5. Chowdhry, U. and Cannon, R. M., “Microstructural Evolution during the Processing of Sodium β-alumina,” Processing of Crystalline Ceramics, Eds., Palmour, H. III. Davis, R. F., and Hare, T. M. (Plenum Press) (1978), 443.CrossRefGoogle Scholar
6. Becker, P. F., Sommers, J. H., Bender, B. A. and MacFarlane, B.A., “Ceramics Sintered Directly From Sol-Gels,” ibid, 79.Google Scholar
7. Huckabee, M. L., Hare, T. M. and Palmour, H. III, “Rate Controlled Sintering as a Processing Method,” ibid, 205.CrossRefGoogle Scholar
8. (a) Pampuch, R., “Contribution au Problem du Frittage Oxydes Purs avec Additions.” Bull. Soc. Franc. Ceram. 46, 3 (1960).Google Scholar
8a (b) Pampuch, R., “Sinterung Reiner Sowie Aktivierter Oxyde in Festen Zustand,” Silika-Techn. 10, 69 (1969).Google Scholar
9. Morgan, P. E. D., “The Sintering of Zinc and Cadmium Sulfides,” Proc. Intl. Conf. Sintering and Related Phenomena, Notre Dame, Ind., 543, June (1965) Gordon and Breach, (1967) Ed., Kuczynski, G.C..Google Scholar
10. Livey, D. T., Wanklin, B. M., Hewitt, M. and Murray, P., “The Properties of MgO Powders Prepared by the Decomposition of Mg(OH)2,” Trans. Brit. Ceram. Soc. 56, 217 (1957).Google Scholar
11. Quirk, J. F., “Factors Affecting Sinterability of Oxide Powders,” J. Am. Ceram. Soc. 42, 178 (1959).CrossRefGoogle Scholar
12. Reeve, K. D., “Nonuniform Shrinkage in Sintering,” Am. Ceram. Soc. Bull., 42, 452 (1963).Google Scholar
13. Vasilos, T. and Rhodes, W., “Fine Particulates to Ultrafine-grain Ceramics,” 137, in Ultrafine-Grain Ceramics, Burke, J. J., Reed, N. L., and Weiss, V. (Eds.), Syracuse Univ. Press (1970).Google Scholar
14. Rhodes, W. H., “Agglomerate and Particle Size Effects on Sintering Yttria-Stabilized Zirconia,” J. Amer. Ceram. Soc. 64, 19 (1981).Google Scholar
15. Morgan, P. E. D. and Scala, E., “Fully Dense Oxides by the Pressure Calcintering of Hydroxides,” Intl. Conf. on Sintering and Related Phenomena, Notre Dame, Ind., June (1965), Gordon and Breach, 861 (1967), Ed., Kuczynski, G. C..Google Scholar
16. Kellett, B. J. and Lange, F. F., “Stresses Induced by Differential Sintering in Powder Compacts,” in press, J. Am. Ceram. Soc.Google Scholar
17. Morgan, P. E. D., “Superplasticity in Ceramics,” Ultrafine Grain Ceramics, Ed., Burke, J. J., Reed, N. L., Weiss, V., Syracuse University Press, 251 (1970).Google Scholar
18. Morgan, P. E. D. and Schaeffer, N. C., “Chemically Activated Pressure Sintering of Oxides,” Technical Report AFML-TR-66-356, NTIS-AD-815066, Feb. (1967).Google Scholar
19. Hensler, J. H. and Cullen, G. V., “Grain Shape Changes During Creep in Magnesium Oxide,” J. Am. Ceram. Soc. 50, 584 (1967).Google Scholar
20. Unpublished work in progress.Google Scholar
21. Lange, F. F. and Davis, B. I., “Sinterability of ZrO2 and Al2O3 Powders: The Role of pore Coordination Number Distribution,” in press, J. Am. Ceram. Soc.Google Scholar
22. Morgan, P. E. D., “Chemical Processing of Ceramics (and Polymers),” 14th University Conference, Processing of Crystalline Ceramics, Eds. Palmour, H. III, Davis, R. F., Hare, I. M., Plenum Press (1978).Google Scholar
23. Prochazka, S., “Optically Translucent Ceramics,” U.S. Patent No. 4,427,785, Jan. (1984).Google Scholar
24. Morgan, P. E. D., “Sintering and Grain Growth in Metal Oxide Powder Compacts,” Ph.D. Thesis, London University (1963).Google Scholar
25. Morgan, P. E. D. and Flintoff, J. E., unpublished work.Google Scholar
26. Kimura, T. and Yamaguchi, T., “Morphology of Bi2WO6 Powders Obtained in the Presence of Fused Salts,” J. Matl. Sci. 17, 1863 (1982).CrossRefGoogle Scholar
27. Morgan, P. E. D., “Preparation and Electric Field Alignment of SbSI Crystals,” Comm. Am. Ceram. Soc. C82 (1982).Google Scholar
28. Leitheiser, M. A. and Sowman, H. G., “Non-Fused Aluminum Oxide-Based Abrasive Material, U.S. Patent No. 4,314,827 (1982).Google Scholar
29. Iwai, T. and Kawahito, T. work, “Process for Producing Metallic Nitride Powders,” U.S. Patent No. 4,196,178, April 1 (1980).Google Scholar
30. Garvie, R. C., “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect,” J. Phys. Chem. 69, 1238 (1965).CrossRefGoogle Scholar
31. Clearfield, A., “Crystalline Hydrous Zirconia,” Inorg. Chem. 3, 146 (1964).Google Scholar
32. Morgan, P. E. D., “Preparing New Extremely Difficult to Form Crystal Structures,” Mat. Res. Bull. 19, 369 (1984).Google Scholar
33. Morgan, P. E. D. and Pugar, E. A., “New Compounds and Phase Relations, Implications for Refractory Inclusions in Meteorites,” Lunar and Planetary Science XV, 566 (1984).Google Scholar
34. Schutzenberger, M. P., Sur l'azoture de silicum, Compte Rendus, Academie des Sciences, Paris, 89, 644 (1879).Google Scholar
35. Blix, M. and Wirbelauer, W., “Ueber das Siliciumsulfochlorid SiSCl2, Siliciumimid, Si(NH)2, Siliciumstickstoffimid (Silicam), Si2NH3H und den Siliciumstickstoff, Si3N4,” Ber. 36, 4220 (1903).Google Scholar
36. Billy, M., Brossard, M., Desmaison, J., Giraud, D. and Goursat, P., “Synthesis of Si and Ge Nitrides and Si Oxynitride by Ammonolysis of Chlorides”, J. Am. Ceram. Soc. 58, 254 (1975).Google Scholar
37. Mazdiyasni, K. S, “Synthesis, Characterization, and Consolidation of Si3N4 Obtained from Ammonolysis of SiCl4,” J. Am. Ceram. Soc. 56, 628 (1973).Google Scholar
38. (a) Morgan, P. E. D., “Research on Densification, Character, and Properties of Dense Silicon Nitride,” office of Naval Research, AD–757,748, March (1973).Google Scholar
38a (b) Morgan, P. E. D, “Production and formation of Si3N4 from Precursor Materials,” Office of Naval Research, AD–778,373, Dec. (1973).Google Scholar
39. Clarke, D. R., “Densification of Silicon Nitride: Effect of Chlorine Impurities,” Jo Am. Ceram. Soc. 65, C21 (1982).Google Scholar
40. Raj, R. and Morgan, P. E. D., “Activation Energies for Densification, Creep and Grain Boundary Sliding in Nitrogen Ceramics,” J. Am. Ceram. Soc. 64, C143 (1981).Google Scholar
41. Berezhnoi, A. S., Silicon and Its Binary Systems, translated from Russian, Consultants Bureau (1960).Google Scholar
42. Morgan, P. E. D., “The α/β-Si3N4 Question,” J. Mat. Sci. 15, 791 (1980).Google Scholar
43. Inoue, H., Komeya, K. and Tsuge, A., “Synthesis of Silicon Nitride Powder from Silica Reduction,” Comm. Am. Ceram. Soc. C205 (1982).Google Scholar