Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:10:20.171Z Has data issue: false hasContentIssue false

Automated Reel-to-Reel Fluidic Self-Assembly for the Production of Solid State Lighting Modules

Published online by Cambridge University Press:  10 July 2015

Se-Chul Park
Affiliation:
University of Minnesota, Electrical and Computer Engineering, 200 Union St. SE., Minneapolis, MN 55455, U.S.A.
Jun Fang
Affiliation:
University of Minnesota, Electrical and Computer Engineering, 200 Union St. SE., Minneapolis, MN 55455, U.S.A.
Shantonu Biswas
Affiliation:
Fachgebiet Nanotechnologie, Technische Universität Ilmenau, Gustav-Kirchhoff-Strasse 1, Ilmenau, D-98693, Germany
Mahsa Mozafari
Affiliation:
Fachgebiet Nanotechnologie, Technische Universität Ilmenau, Gustav-Kirchhoff-Strasse 1, Ilmenau, D-98693, Germany
Thomas Stauden
Affiliation:
Fachgebiet Nanotechnologie, Technische Universität Ilmenau, Gustav-Kirchhoff-Strasse 1, Ilmenau, D-98693, Germany
Heiko O. Jacobs
Affiliation:
Fachgebiet Nanotechnologie, Technische Universität Ilmenau, Gustav-Kirchhoff-Strasse 1, Ilmenau, D-98693, Germany
Get access

Abstract

We report the implementation of an automated reel-to-reel fluidic self-assembly system based on surface-tension driven self-assembly for macroelectronics application. The reported system incorporates precisely controlled and automated agitation, web moving, component recycling, and dispensing system. The system enables continuous parallel assembly of semiconductor chips at a high rate (15,000 chips per hour using 2.5 cm wide web) and assembly yield (>99%) under optimal condition. In principle, scaling to any throughput should be possible considering the parallel nature of self-assembly. The process overcomes the limitations on area and throughput of prior methods. It provides a new platform for macroelectronics to enable the integration of microscopic high performance inorganic semiconductors on flexible substrates with any desired location, pitch, and integration density. As an example we demonstrate the fabrication of a solid state area lighting module.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Smith, J. S., Yeh, H. J. J., US Patent 5,824,186, (1998)Google Scholar
Srinivasan, U., Liepmann, D., Howe, R. T., J. Microelectromech. Syst. 10, 1724 (2001).CrossRefGoogle Scholar
Zheng, W., Buhlmann, P., Jacobs, H. O., Proc. Natl. Acad. Sci. 101, 1281412817 (2004).CrossRefGoogle Scholar
Zheng, W., Jacobs, H. O., Adv. Mater. 18, 13871392 (2006).CrossRefGoogle Scholar
Ko, H.C., Shin, G., Wang, S., Stoykovich, M.P., Lee, J.W., Kim, D.-H., Ha, J. S., Huang, Y., Hwang, K. -C., Rogers, J. A., Small 23, 27032709 (2009).CrossRefGoogle Scholar
Jacobs, H. O., Whitesides, G. M., Science 291, 17631766 (2001).CrossRefGoogle Scholar
Xiong, X., Hanein, Y., Fang, J., Wang, Y., Wang, W., Schwartz, D.T., Böhringer, K.F., J. Microelectromech. Syst. 12, 117127 (2003).CrossRefGoogle Scholar