Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:19:32.430Z Has data issue: false hasContentIssue false

Attempts to p-Dope Ultrananocrystalline Diamond Films in a Hot Filament Reactor

Published online by Cambridge University Press:  01 February 2011

Paul William May
Affiliation:
[email protected], University of Bristol, School of Chemistry, Cantock's Close, BRISTOL, BS8 1TS, United Kingdom, +44 (0)117 9289927, +44 (0)117 9251295
Matthew Hannaway
Affiliation:
[email protected], University of Bristol, School of Chemistry, Cantock's Close, BRISTOL, BS8 1TS, United Kingdom, +44 (0)117 9289927, +44 (0)117 9251295
Get access

Abstract

Ultrananocrystalline diamond (UNCD) films have been deposited using hot filament chemical vapour deposition using Ar/CH4/H2 gas mixtures plus additions of B2H6 in an attempt to make p-type semiconducting films. With increasing additions of B2H6 from 0 to 40,000 ppm with respect to C, the film growth rate was found to decrease substantially, whilst the individual grain sizes increased from nm to μm. With 40,000 ppm of B2H6, crystals of boric oxide were found on the substrate surface, which slowly hydrolysed to boric acid on exposure to air. These results are rationalised using a model for UNCD growth based on competition for surface radical sites between CH3 and C atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gruen, D.M., Shenderova, O.A., Vul', A.Ya. (Eds.), Synthesis, Properties and Applications of Ultrananocrystalline Diamond, Springer, 2005 (NATO Science Series part II, vol.192).Google Scholar
2. Xiao, X., Birrell, J., Gerbi, J.E., Auciello, O. and Carlisle, J.A., J. Appl. Phys. 96, 2232 (2004).Google Scholar
3. Williams, O.A., Daenen, M., D'Haen, J., Haenen, K., Maes, J., Moshchalkov, V.V., Nesládek, M., Gruen, D.M., Diamond Relat. Mater. 15, 654 (2006).Google Scholar
4. Birrell, J., Carlisle, J.A., Auciello, O., and Gruen, D.M., Gibson, J.M., Appl. Phys. Letts. 81, 2235 (2002).Google Scholar
5. Bhattacharyya, S., Auciello, O., Birrell, J., Carlisle, J.A., Curtiss, L.A., Goyette, A.N., Gruen, D.M., Krauss, A.R., Schlueter, J., Sumant, A., and Zapol, P., Appl. Phys. Letts. 79, 1441 (2001).Google Scholar
6. Wurzinger, P., Pongratz, P., Hartmann, P., Haubner, R., Lux, B., Diamond Relat. Mater. 6, 763 (1997).Google Scholar
7. Philip, J. and Hess, P., Feygelson, T., Butler, J.E., Chattopadhyay, S., Chen, K.H., Chen, L.C., J. Appl. Phys. 93, 2164 (2003).Google Scholar
8. May, P.W., Smith, J.A., Mankelevich, Yu. A., Diamond Relat. Mater., 15, 345 (2006).Google Scholar
9. May, P.W., Harvey, J.N., Smith, J.A., Mankelevich, Yu.A., J. Appl. Phys. 99, 104907 (2006),.Google Scholar
10. May, P. W., Mankelevich, Yu. A., J. Appl. Phys., (2006), in press.Google Scholar
11. Comerford, D.W., Cheesman, A., Carpenter, T.P.F., Davies, D.M.E., Fox, N.A., Sage, R.S., Smith, J.A., Ashfold, M.N.R., Mankelevich, Yu. A., J. Phys. Chem. A 110, 2868 (2006).Google Scholar
12. Ferrari, A.C. and Robertson, J., Phys. Rev. B, 63, 121405 (2001).Google Scholar
13. Erdemir, A., Fenske, G. R., Erck, R. A., Surf. and Coatings Technol. 43/44, 588 (1990).Google Scholar
14. Cheesman, A., Harvey, J. N. and Ashfold, M .N. R., Phys. Chem. Chem. Phys. 7, 1121 (2005).Google Scholar