Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:18:20.033Z Has data issue: false hasContentIssue false

Attempt to Grow α-Rhombohedral Boron Crystals in Copper Solvent

Published online by Cambridge University Press:  31 January 2011

Wei Gao
Affiliation:
[email protected], Kansas State University, Chemical Engineering, 1005 Durland Hall, Manhattan, Kansas, KS, United States
Clinton Whiteley
Affiliation:
[email protected], Kansas State University, Manhattan, United States
Yi Zhang
Affiliation:
[email protected], Kansas State University, Manhattan, United States
Jack Plummer
Affiliation:
[email protected], Kansas State University, Manhattan, United States
James Edgar
Affiliation:
[email protected], Kansas State University, Chemical Engineering, Manhattan, United States
Yinyan Gong
Affiliation:
[email protected], University of Bristol, Bristol, United Kingdom
Martin Kuball
Affiliation:
[email protected], University of Bristol, Bristol, United Kingdom
Get access

Abstract

An excellent material for thermal neutron detectors is α-rhombohedral boron, due to the large neutron capture cross section of 10B, high hole mobility and ability to self-heal from radiation damage, to date, little work has been done on the crystal growth of α-rhombohedral boron. In this investigation, we attempt to grow α-rhombohedral boron by the solution growth method, employing copper as solvent. Well-faceted transparent red crystals several hundreds of microns in size have been made. Elemental analysis of the crystals detected boron, with negligible amounts of copper, suggesting that copper is a promising solvent for the crystal growth of α-rhombohedral boron crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Knoll, G.F. Radiation Detection and Measurements 3rd ed (j. Wiley 2000) p.p 505535 Google Scholar
2. Bell, Z.W. Carpenter, D.A. Cristy, S.S. Lamberti, V.E. Burger, A. Woodfield, B.F. Niedermayr, T. Hau, I.D. Labov, S.E. Friedrich, S. West, W.G. Pohl, K.R. and Berg, L. van den, Phys. Stat. Sol. C 2 1592 (2005).Google Scholar
3. Lundstedt, C. Harken, A. Day, E. Robertson, B.W. and Adenwalla, S. Nucl. Inst. Meth. A 562 380 (2006).Google Scholar
4. Carrard, M. Emin, D. Zuppiroli, L. Phys. Rev. B 51 11,270 (1995).Google Scholar
5. Golikova, O.A Chemtronics 5, 3(1991)Google Scholar
6. Horn, F. Hubbard, J. Electrochem. Soc., Volume 106, Issue 10, pp. 905906 (1959)Google Scholar
7. Wald, F. Bullitt, J., “Semiconductor Neutron Detectors”. Defense Technical Information Center, Jan 1973, Accession Number: AD0771526.Google Scholar
8. Jacob, K. T. Priya, S. and Waseda, Y. Metall. Mater. Trans. A 31, 2674 (2000).Google Scholar
9. Wald, F. Electron Technology, Institute of Electron Technology P.A Sci., Warsaw 3, 1/2, 103 (1971)Google Scholar
10. Tallant, D.R. Aselage, T.L. Campbell, A.N. and Emin, D. Phys. Rev. B 40, 5649 (1989).Google Scholar
11. Beckel, C.L. Yousaf, M. Fuka, M.Z. Raja, S.Y. and Lu, N. Phys. Rev. B 44, 2535 (1991).Google Scholar
12. Vast, N. Baroni, S. Zerah, G. Besson, J.M. Polian, A. Grimsditch, M, and Chervin, I.C. Phys. Rev. Lett. 78, 693 (1997).Google Scholar
13. Richter, W. Hausen, A. and Binnenbruch, H. Phys. Stat. Sol. (b) 60, 461 (1973).Google Scholar