Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:58:46.643Z Has data issue: false hasContentIssue false

Atomistically informed continuum model for body centered cubic iron

Published online by Cambridge University Press:  26 September 2011

Aenne Koester
Affiliation:
Ruhr-University Bochum, Interdisciplinary Centre for Advanced Materials Simulation, Stiepeler Strasse 129, 44801 Bochum, Germany
Anxin Ma
Affiliation:
Ruhr-University Bochum, Interdisciplinary Centre for Advanced Materials Simulation, Stiepeler Strasse 129, 44801 Bochum, Germany
Alexander Hartmaier
Affiliation:
Ruhr-University Bochum, Interdisciplinary Centre for Advanced Materials Simulation, Stiepeler Strasse 129, 44801 Bochum, Germany
Get access

Abstract

Plastic deformation in body centered cubic iron is dominated by glide of screw dislocations with non-planar dislocation cores. This causes a strong strain rate and temperature dependence of flow stress, the breakdown of Schmid’s law and a dependence of dislocation mobility on shear stress components that do not contribute to the mechanical driving force for dislocation glide. Based on the framework of crystal plasticity, we developed a constitutive plasticity model that takes all these phenomena into account. To parameterize this continuum plasticity model molecular statics simulations using a semi-empirical potential have been performed. These atomistic calculations yielded quantitative relationships for the influence of all components of the local stress tensor on dislocation mobility. Together with experimental data from the literature on the kinetics of screw dislocations in bcc iron the constitutive relation presented here has been developed. As application example of the model, we calculated the tension compression asymmetry and the strain rate dependence of the hardening behavior within a bcc iron crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hollang, L., Brunner, D., and Seeger, A., Mater. Sci. Eng. A 319-321, pp. 223236 (2001)Google Scholar
2. Takeuchi, T. et al. , JJAP 6, pp. 12821291 (1967)Google Scholar
3. Christian, J. W., J. Metall. Trans. A 14, pp. 12371255 (1983)Google Scholar
4. Groeger, R., Bailey, A. G. and Vitek, V., Acta Mat. 56, pp. 54015411 (2008)Google Scholar
5. Groeger, R., Racherla, V., Bassani, J.L. and Vitek, V., Acta Mat. 56, pp. 54125425 (2008)Google Scholar
6. Groeger, R. and Vitek, V., Acta Mat. 56, pp. 54265439 (2008)Google Scholar
7. Brunner, D. and Diehl, J., J. Phys. Stat. Sol. (a) 124, pp. 455464 (1991)Google Scholar
8. Caillard, D., Acta. Mat. 58, pp. 34933503 (2010)Google Scholar
9. Caillard, D., Acta. Mat. 58, pp. 35043515 (2010)Google Scholar
10. Groeger, R. and Vitek, V., Int. J. Mat. Res. 100, pp. 315321 (2009)Google Scholar
11. Asaro, R., J. Appl. Mech. 50, pp. 921934 (1983)Google Scholar
12. Kocks, U. F., Argon, A. S. and Ashby, M.F., Prog. Mat. Sci. 19, pp. 1219 (1975)Google Scholar
13. Asaro, R. and Needleman, A., Acta Mat. 33, pp. 923953 (1985)Google Scholar
14. Brown, S. B., Kim, K. H. and Anand, L., Int. J. Plast. 5, pp.95130 (1989)Google Scholar
15. Mendelev, M. I., Han, S., Srolovitz, D. J., Phil. Mag.. 11, pp. 39773994 (2003)Google Scholar
16. Chaussidon, J., Fivel, M., Rodney, D., Acta Mat. 54, pp. 34073416 (2006)Google Scholar
17. Spitzig, W. A. and Keh, A. S., Metal. Trans. 1, pp. 27512757 (1970)Google Scholar
18. Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., and Gumbsch, P., Phys. Rev. Lett. 97 (2006)Google Scholar