Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:33:52.156Z Has data issue: false hasContentIssue false

Atomistic Studies of Dislocation Glide in γ-TiAl

Published online by Cambridge University Press:  11 February 2011

R. Porizek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104–6272, U.S.A
S. Znam
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104–6272, U.S.A
D. Nguyen-Manh
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104–6272, U.S.A
D. G. Pettifor
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Get access

Abstract

Computer simulation of the core structure and glide of ordinary 1/2<110] dislocations and <101] superdislocations in L10 TiAl has been performed using the recently constructed BondOrder Potentials. This description of atomic interactions includes explicitly, within the tight-binding approximation, the most important aspects of the directional bonding, namely d-d, p-p and d-p bonds. The ordinary dislocation in the screw orientation was found to have a non-planar core and, therefore, high Peierls stress. The superdislocation was found to possess in the screw orientation either a planar (glissile) or a non-planar (sessile) core structure. However, the glissile core transforms into the sessile one for certain orientations of the applied stress. This implies a strong asymmetry of the yield stress and the break down of the Schmid law when the plastic flow is mediated by superdislocations. At the same time, this may explain the orientation dependence of the dislocation substructure observed in the single-phase γ-TiAl by electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamaguchi, M., Inui, H., Yokoshima, S., Kishida, K. and Johnson, D. R., Mat. Sci. Eng. A 213, 25 (1996).Google Scholar
2. Sriram, S., Vasudevan, V. K. and Dimiduk, D., High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J. A., Baker, I., Hanada, S., Noebe, R. D. and Schwartz, D. S. (Pittsburgh, Materials Research Society), Vol. 364, p. 647 (1999).Google Scholar
3. Inui, H., Matsumuro, M., Wu, D. H. and Yamaguchi, M., Philos. Mag. A 75, 395 (1997).Google Scholar
4. Kawabata, T., Kanai, T. and Izumi, O., Acta Metall. 33, 1355 (1985).Google Scholar
5. Duesbery, M. S., Dislocations in Solids, edited by Nabarro, F. R. N. (Amsterdam, Elsevier), Vol. 8, p. 67 (1989).Google Scholar
6. Vitek, V., Prog. Mater. Sci. 36, 1 (1992).Google Scholar
7. Vitek, V., Intermetallics 6, 579 (1998).Google Scholar
8. Girshick, A. and Vitek, V., High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J., Baker, I., Hanada, S., Noebe, R. D. and Schwartz, D. (Pittsburgh, Materials Research Society), Vol. 364, p. 145 (1995).Google Scholar
9. Simmons, J. P., Rao, S. I. and Dimiduk, D. M., Philos. Mag. A 75, 1299 (1997).Google Scholar
10. Panova, J. and Farkas, D., Philos. Mag. A 78, 389 (1998).Google Scholar
11. Woodward, C. and Rao, S. I., Philos. Mag. A, in press (2003).Google Scholar
12. Song, Y., Tang, S. P., Xu, J. H., Mryasov, O. N., Freeman, A. J., Woodward, C. and Dimiduk, D. M., Philos. Mag. B 70, 987 (1994).Google Scholar
13. Nguyen-Manh, N., Bratkovsky, A. M. and Pettifor, D. G., Phil. Trans. Roy. Soc. London A 351, 529 (1995).Google Scholar
14. Zou, J., Fu, C. L. and Yoo, M. H., Intermetallics 3, 265 (1995).Google Scholar
15. Nguyen-Manh, D. and Pettifor, D. G., Intermetallics 7, 1095 (1999).Google Scholar
16. Nguyen-Manh, D. and Pettifor, D. G., Gamma Titanium Aluminides, edited by Kim, Y. W. (Pittsburgh, TMS), p. 175 (1999).Google Scholar
17. Znam, S., Philadelphia, University of Pennsylvania, (2001).Google Scholar
18. Znam, S., Nguyen-Manh, D., Pettifor, D. G. and Vitek, V., Philos. Mag. A, in press (2003).Google Scholar
19. Pettifor, D. G., Phys. Rev. Lett. 63, 2480 (1989).Google Scholar
20. Horsfield, A. P., Bratkovsky, A. M., Fearn, M., Pettifor, D. G. and Aoki, M., Phys. Rev. B 53, 1656, 12694 (1996).Google Scholar
21. Pettifor, D. G., Oleinik, I. I., Nguyen-Manh, D. and Vitek, V., Comp. Mat. Sci. 23, 33 (2002).Google Scholar
22. Vitek, V., Ito, K., Siegl, R. and Znam, S., Mat. Sci. Eng. A 240, 752 (1997).Google Scholar
23. Ehmann, J. and Fähnle, M., Philos. Mag. A 77, 701 (1998).Google Scholar
24. Gregori, F. and Veyssiere, P., Philos. Mag. A 80, 2913, 2933 (2000).Google Scholar
25. Ito, K. and Vitek, V., Philos. Mag. A 81, 1387 (2001).Google Scholar
26. Rao, S. I. and Woodward, C., Philos. Mag. A 81, 1317 (2001).Google Scholar
27. Woodward, C. and Rao, S. I., Philos. Mag. A 81, 1305 (2001).Google Scholar
28. Veyssiere, P., Chiu, Y.-L. and Gregori, F., Defect Properties and Related Phenomena in Intermetallic Alloys, edited by George, E. P., Mills, M. J., Inui, H. and Eggeler, G., this volume (2003).Google Scholar
29. Hug, G., Loiseau, A. and Veyssiere, P., Philos. Mag. A 57, 499 (1988).Google Scholar
30. Li, Z. X. and Whang, S. H., Mat. Sci. Eng. A 152, 182 (1992).Google Scholar
31. Inui, H. and Yamaguchi, M., Electron Microscopy 32, 144 (1997).Google Scholar