Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:48:05.234Z Has data issue: false hasContentIssue false

Atomistic Simulations of Point Defect Properties in Silicon

Published online by Cambridge University Press:  26 February 2011

Dimitrios Maroudas
Affiliation:
Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, MA 02139
Robert A. Brown
Affiliation:
Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, MA 02139
Get access

Abstract

A systematic analysis based on atomistic simulations is presented for the calculation of energies and equilibrium concentrations of intrinsic point defects in silicon. Calculation of Gibbs free energies is based on the quasi-harmonic approximation for the reference state and the cumulant analysis of the enthalpy distribution function from Monte Carlo simulations in the reference state. Results are presented for the temperature dependence of enthalpies, volumes, and free energies of formation and thermal equilibrium concentrations of vacancies and self-interstitials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys., 61, 289 (1989).Google Scholar
2. Gösele, U. M. and Tan, T. Y., MRS Bulletin, vol. XVI, No. 11, 42 (1991).Google Scholar
3. Morehead, F. F., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S. J., and Davies, G. (Mat. Res. Soc. Symp. Proc. 104, Pittsburgh, PA, 1988), pp. 99104.Google Scholar
4. Stillinger, F. H. and Weber, T. A., Phys. Rev. B, 31, 5262 (1985).Google Scholar
5. Batra, I. P., Abraham, F. F., and Ciraci, S., Phys. Rev. B, 35, 9552 (1987).CrossRefGoogle Scholar
6. Ghaisas, S. V., Phys. Rev. B, 43, 1808 (1991).CrossRefGoogle Scholar
7. Phillpot, S. R. and Rickman, J. M., J. Chem. Phys., 94, 1454 (1991).CrossRefGoogle Scholar
8. Rickman, J. M. and Phillpot, S. R., Phys. Rev. Lett., 6, 349 (1991).Google Scholar
9. Lutsko, J. F., Wolf, D., and Yip, S., J. Chem. Phys., 88, 6525 (1988).Google Scholar
10. Dahlquist, G. and Björclk, A., Numerical Methods, (Prentice-Hall, Englewood Cliffs NJ, 1974), p. 158.Google Scholar
11. LeSar, R., Najafabadi, R., and Srolovitz, D. J., Phys. Rev. Lett., 6, 624 (1989).CrossRefGoogle Scholar
12. Broughton, J. Q. and Li, X. P., Phys. Rev. B, 35, 9120 (1987).Google Scholar
13. Dannefaer, S., Masher, P., and Kerr, D., Phys. Rev. Lett., 56, 2195 (1986).Google Scholar
14. Vechten, J. A. Van, presented at the March Meeting of the American Physical Society, New York City, paper BI 1 (1987).Google Scholar
15. Masters, B. J. and Gorey, E. F., J. App. Phys., 49, 2717 (1978).CrossRefGoogle Scholar