Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:42:25.091Z Has data issue: false hasContentIssue false

Atomistic Simulations of Nanoporous Anodic Aluminum Oxide

Published online by Cambridge University Press:  01 February 2011

Shashishekar P. Adiga
Affiliation:
[email protected], Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, Argonne, IL, 60516, United States, 630-252-8377
Peter Zapol
Affiliation:
Larry A Curtiss
Affiliation:
Get access

Abstract

Nanoporous membranes based on anodized aluminum oxide are prepared with atomic level control of pore dimensions and pore wall compositions by atomic layer deposition and are under investigation for use in catalysis. Simulation and modeling help to understand reactivity in confined geometry and to develop rational design of these new materials. In this context, we present results of molecular dynamics simulations of amorphous aluminum oxide surfaces. The surface structure is discussed in terms of density profiles, bond angle distributions and coordination numbers of surface atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 O'Sullivan, J. P., and Wood, G. C., Proc. R. Soc. London, Ser. A 317, 511 (1970).Google Scholar
2 Xiong, G. et al., J. Phys. Chem. B 109, 14059 (2005).Google Scholar
3 Ott, A. W., McCarley, K. C., Klaus, J. W., Way, J. D., and George, S. M., Appl. Surf. Sci. 107, 128 (1996).Google Scholar
4 Nasluzov, V. A., Rivanenkov, V. V., Shor, A. M., Neyman, K. M., Birkenheuer, U., and Rosch, N., Int. J. Quant. Chem. 90, 386 (2000).Google Scholar
5 Elliot, S. D., Comp. Mat. Sci. 33, 20 (2005).Google Scholar
6 Levine, S. M., and Garofalini, A. H., J. Chem. Phys. 86 2997 (1987).Google Scholar
7 Marmier, A. and Finnis, M. W., J. Phys.: Condens. Matter 14, 7797 (2002).Google Scholar
8 Alvarez, L. J., Leon, L. E., Sanz, J. F., Capitan, M. J., and Odriozola, J. A., Phys. Rev. B 50, 2561 (1994).Google Scholar
9 Gutierrez, G. and Johansson, B., Phys. Rev. B 65, 104202 (2002).Google Scholar
10 Matsui, M., Miner. Mag. 58A, 571 (1994).Google Scholar
11 Gutierrez, G., Belonoshko, A. B., Ahuja, R and Johansson, B., Phys. Rev. E 61, 2723 (2000).Google Scholar
12 Refson, KeithMoldy: a portable molecular dynamics simulation program for serial and parallel computers”, Computer Physics Communications, 126, 309 (2000).Google Scholar
13 Lamparter, P. and Kniep, R., Physica B 234–236, 405 (1997).Google Scholar
14 Rarivomanantsoa, M., Jund, P. and Jullien, R. J. Phys: Condens. Matter 13, 6707 (2001).Google Scholar