Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T18:03:06.472Z Has data issue: false hasContentIssue false

Atomistic Simulation of the Nanoindentation of Diamond and Graphite Surfaces

Published online by Cambridge University Press:  22 February 2011

J. A. Harrison
Affiliation:
Chemistry Division, Code 6170, Naval Research Laboratory, Washington, DC 20375–5000
R. J. Colton
Affiliation:
Chemistry Division, Code 6170, Naval Research Laboratory, Washington, DC 20375–5000
C. T. White
Affiliation:
Chemistry Division, Code 6170, Naval Research Laboratory, Washington, DC 20375–5000
D. W. Brenner
Affiliation:
Chemistry Division, Code 6170, Naval Research Laboratory, Washington, DC 20375–5000
Get access

Abstract

Molecular dynamics simulations which make use of a many-body analytic potential function have been used to study the nanometer-scale indentation of diamond and graphite. We find that the simulation correctly reproduces experimentally determined trends in load versus penetration data. As a result, trends in mechanical properties, e.g. Young's modulus, are also reproduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blau, P. J. and Lawn, B. R., Microindentation Techniques in Materials Science and Engineering, (American Society for Testing and Materials, Philadelphia, 1985).CrossRefGoogle Scholar
2. Burnham, N. A. and Colton, R. J., J. Vac. Sci. Tech. A 7, 2906 (1989).CrossRefGoogle Scholar
3. Microscience, Inc., 41 Accord Park Drive, Norwell, MA 02061.Google Scholar
4. Pethica, J. B. and Oliver, W. C., Phys. Scrip. T 19, 61 (1987).CrossRefGoogle Scholar
5. Burnham, N. A., Colton, R. J., and Pollock, H., private communication.Google Scholar
6. Burnham, N. A., Dominguez, D. D., Mowery, R. L., and Colton, R. J., Phys. Rev. Lett. 64, 1931 (1990).CrossRefGoogle Scholar
7. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).Google Scholar
8. Brenner, D. W., Phys. Rev. B 42, 9458 (1990).CrossRefGoogle Scholar
9. Brenner, D. W., Harrison, J.A., White, C.T., and Colton, R.J., Thin Solid Films, in press.Google Scholar
10. Harrison, J. A., Brenner, D.W., White, C.T., and Colton, R.J., Thin Solid Films, in press.Google Scholar
11. Mowrey, R. J., Brenner, D. W., Dunlap, B. I., Mintmire, J. W., and White, C.T., J. Phys. Chem. 95, 7138 (1991).CrossRefGoogle Scholar
12. Harrison, J. A., White, C. T., Colton, R.J., and Brenner, D. W., Surf. Sci. Lett., in press.Google Scholar
13. Sprague, J. T. and Allinger, N. L., J. comp. Chem. 1, 257 (1980).CrossRefGoogle Scholar
14. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R., J. Chem. Phys. 81, 3684 (1984).CrossRefGoogle Scholar
15. Kubiak, G. D. and Kolasinski, K. W., Phys. Rev. B 30, 1381 (1989).CrossRefGoogle Scholar
16. Hamza, A. V., Kubiak, G. D., and Stulen, R. H., Surf. Sci. 237, 35 (1990).CrossRefGoogle Scholar
17. Tsuno, T., Imhi, T., Nishibayashi, Y., Hamada, K., and Fujimore, N., Jpn. J. Appl. Phys. 30, 1065 (1991).CrossRefGoogle Scholar
18. Yang, Y. L. and D'Evelyn, M., J. Am. Chem. Soc, in press.Google Scholar
19. Sneddon, I. N., Int. J. Eng. Sci. 3, 41 (1965).CrossRefGoogle Scholar
20. Henein, G. E. and Hilliard, J. E., J. Appl. Phys. 54, 728 (1983).CrossRefGoogle Scholar
21. The elastic constants for the potential used here in units of 1011 dynes/cm2 are: for diamond c11=61.3, c12=40.5, and c44=63.1; for graphite c11=103.7, c12=15.5, c13=-18.4, c33=5.0, and c44=0.060.Google Scholar
22. Menzel, D. H., Fundamental Formulas of Physics, (Dover Publications, Inc., 1960) p. 586.Google Scholar