Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:15:00.477Z Has data issue: false hasContentIssue false

Atomistic simulation of defect production in β-SiC

Published online by Cambridge University Press:  10 February 2011

R. Devanathan
Affiliation:
Pacific Northwest National Laboratory, Richland WA 99352
W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland WA 99352
T. Diaz de la Rubia
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

The process of defect formation and the threshold energies for Si and C displacements along various crystallographic directions in cubic silicon carbide (β-SiC) have been examined using molecular dynamics simulations. A combination of Tersoff and first-principles potentials was used to model the inter-atomic interactions. The lowest threshold energies for C and Si displacements were found to be 28 and 36 eV, respectively. These displacement threshold energies show excellent agreement with the results of recent first-principles calculations in SiC and with experimental observations. Simulation of a 10 keV Si cascade yielded values of about 0.1 ps for the cascade lifetime and about 3.5 for the ratio of the number of surviving C defects to Si defects. Anti-site defects were found on both Si and C sublattices. These defects may play an important role in the amorphization of SiC by energetic particle irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weber, W. J. and Wang, L. M., Nucl. Inshtrum. Methods B 106, p.298 (1995).Google Scholar
2. Inui, H., Mori, H., Suzuki, A., and Fujita, H., Philos. Mag. B 65, p.1 (1992).Google Scholar
3. Huang, H., Ghoniem, N. M., Wong, J. K., and Baskes, M. I., Modell. Simul. Mater. Sci. Eng. 3, p.615 (1995).Google Scholar
4. de la Rubia, T. Diaz and Guinan, M. W., J. Nucl. Mater. 174, p.151 (1990).Google Scholar
5. Tersoff, J., Phys. Rev B 39, p.5566 (1989); ibid. 49, p.16349 (1994).Google Scholar
6. Nordlund, K., Keinonen, J., and Mattila, T., Phys. Rev. Lett. 77, p. 699 (1996).Google Scholar
7. Devanathan, R., de la Rubia, T. Diaz, and Weber, W. J., J. Nucl. Mater. (1998) (in press).Google Scholar
8. Windl, W., Lenosky, T. J., Kress, J. D., and Voter, A. F., Mat. Res. Soc. Symp. Proc. 490 (1998) (in press).Google Scholar
9. Windl, W., Lenosky, T. J., Kress, J. D., and Voter, A. F., Nucl. Instrum. Methods B (1998) (in press).Google Scholar
10. Zinkle, S. J. and Kinoshita, C., J. Nucl. Mater. (1997) (in press).Google Scholar
11. de la Rubia, T. Diaz, Caturla, M. J., and Tobin, M., Mat. Res. Soc. Symp. Proc. 373, p.555 (1995).Google Scholar
12. Ghaly, M., Averback, R. S., and de la Rubia, T. Diaz, Nucl. Instrum. Methods B 102, p.51 (1995).Google Scholar
13. Luzzi, D. E. and Meshii, M., Res Mechanica 21, p.207 (1987).Google Scholar
14. Devanathan, R., Lam, N. Q., Okamoto, P. R., and Meshii, M., Phys. Rev. B 48, p. 42 (1993).Google Scholar
15. Hobbs, L. W., Sreeram, A. N., Jesurum, C. E., and Berger, B. A., Nucl. Instrum. Methods B 116, p.18 (1996).Google Scholar