Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:58:21.168Z Has data issue: false hasContentIssue false

Atomistic Ordering in Body Centered Cubic Uranium-Zirconium Alloy

Published online by Cambridge University Press:  10 April 2013

Alex P. Moore
Affiliation:
Nuclear and Radiological Engineering Program, George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332, USA
Ben Beeler
Affiliation:
Nuclear and Radiological Engineering Program, George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332, USA
Michael Baskes
Affiliation:
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
Maria Okuniewski
Affiliation:
Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415, USA
Chaitanya S. Deo
Affiliation:
Nuclear and Radiological Engineering Program, George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332, USA
Get access

Abstract

The metallic binary-alloy fuel Uranium-Zirconium is important for the use of the new generation of advanced fast reactors. Uranium-Zirconium goes through a phase transition at higher temperatures to a (gamma) Body Centered Cubic (BCC) phase. The BCC high temperature phase is particularly important, since the BCC phase corresponds to the temperature range in which the fast reactors will operate. A semi-empirical MEAM (Modified Embedded Atom Method) potential is presented for Uranium-Zirconium. The physical properties of the Uranium-Zirconium binary alloy were reproduced using Molecular Dynamics (MD) simulations and Monte Carlo (MC) simulations with the MEAM potential. This is a large step in making a computationally acceptable fuel performance code.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauer, A. A. (1959). An Evaluation of the Properties and Behavior of Zirconium-Uranium Alloys, Battelle Memorial Inst., Columbus, Ohio.10.2172/4212394CrossRefGoogle Scholar
Beeler, B., et al. . (2010). “First principles calculations for defects in U.” Journal of Physics: Condensed Matter 22(50): 505703.Google Scholar
Beeler, B., et al. . (2011). “First-principles calculations of the stability and incorporation of helium, xenon and krypton in uranium.” Journal of Nuclear Materials.Google Scholar
Bozzolo, G., et al. . (2010). “Surface properties, thermal expansion, and segregation in the U–Zr solid solution.” Computational Materials Science 50(2): 447453.10.1016/j.commatsci.2010.09.002CrossRefGoogle Scholar
Droegkamp, R. (1955). HOT MALLEABILITY OF ZIRCALOY-2 AND HIGH ZIRCONIUM-URANIUM ALLOYS, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh.10.2172/4382657CrossRefGoogle Scholar
Landa, A., et al. . (2012). “Ab Initio Study of Advanced Metallic Nuclear Fuels for Fast Breeder Reactors.” MRS Online Proceedings Library 1444(1).Google Scholar
Landa, Alex, Söderlind, Per, and Turchi, Patrice EA. “Density-functional study of the U–Zr system.” Journal of Alloys and Compounds 478.1 (2009): 103110.10.1016/j.jallcom.2008.12.052CrossRefGoogle Scholar
Leibowitz, L., et al. . (1989). “Thermodynamics of the uranium-zirconium system.” Journal of Nuclear Materials 167: 7681.10.1016/0022-3115(89)90426-1CrossRefGoogle Scholar
Okamoto, H. (2007). “U-Zr (Uranium-Zirconium).” Journal of Phase Equilibria and Diffusion 28(5): 499500.10.1007/s11669-007-9155-1CrossRefGoogle Scholar
Rough, F. (1955). An Evaluation of Data on Zirconium-Uranium Alloys, Battelle Memorial Inst., Columbus, Ohio.10.2172/4352223CrossRefGoogle Scholar
Baskes, M. I. “Modified embedded-atom potentials for cubic materials and impurities.” Physical Review B 46.5 (1992): 2727.10.1103/PhysRevB.46.2727CrossRefGoogle ScholarPubMed
Kim, Young-Min, Lee, Byeong-Joo, and Baskes, M. I.. “Modified embedded-atom method interatomic potentials for Ti and Zr.” Physical Review B 74.1 (2006): 014101.10.1103/PhysRevB.74.014101CrossRefGoogle Scholar
Metropolis, N, Rosenbluth, A W, Rosenbluth, M N, Teller, A H and Teller, A E 1953 J. Chem. Phys. 21 1087 10.1063/1.1699114CrossRefGoogle Scholar
Wang, Guofeng, et al. . “Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M= Ni, Re, Mo).” Progress in surface science 79.1 (2005): 2845.Google Scholar
Chevalier, Pierre-Yves, Fischer, Evelyne, and Cheynet, Bertrand. “Progress in the thermodynamic modelling of the O–U–Zr ternary system.” Calphad 28.1 (2004): 1540.10.1016/j.calphad.2004.03.005CrossRefGoogle Scholar
Akabori, M., et al. . “Stability and structure of the δ phase of the U-Zr alloys.”Journal of nuclear materials 188 (1992): 249254.10.1016/0022-3115(92)90480-9CrossRefGoogle Scholar
Baskes, M. I., and Johnson, R. A.. “Modified embedded atom potentials for HCP metals.” Modelling and Simulation in Materials Science and Engineering 2.1 (1999): 147.10.1088/0965-0393/2/1/011CrossRefGoogle Scholar
Lee, Byeong-Joo, and Baskes, M. I.. “Second nearest-neighbor modified embedded-atom-method potential.” Physical Review B 62.13 (2000): 8564.10.1103/PhysRevB.62.8564CrossRefGoogle Scholar
Lee, Byeong-Joo, et al. . “Second nearest-neighbor modified embedded atom method potentials for bcc transition metals.” Physical Review B 64.18 (2001): 184102.10.1103/PhysRevB.64.184102CrossRefGoogle Scholar
Jelinek, B., et al. . “Modified embedded-atom method interatomic potentials for the Mg-Al alloy system.” Physical Review B 75.5 (2007): 054106.10.1103/PhysRevB.75.054106CrossRefGoogle Scholar
Kim, Young-Min, Lee, Byeong-Joo, and Baskes, M. I.. “Modified embedded-atom method interatomic potentials for Ti and Zr.” Physical Review B 74.1 (2006): 014101.10.1103/PhysRevB.74.014101CrossRefGoogle Scholar