Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:47:53.248Z Has data issue: false hasContentIssue false

Atomistic Modeling of Ion Beam Induced Defects in Si: From Point Defects to Continuous Amorphous Layers.

Published online by Cambridge University Press:  17 March 2011

Lourdes Pelaz
Affiliation:
Juan Barbolla Departamento de Electricidad y Electrónica.Universidad de Valladolid E-47011 Valladolid, Spain
Luis A. Marqués
Affiliation:
Juan Barbolla Departamento de Electricidad y Electrónica.Universidad de Valladolid E-47011 Valladolid, Spain
Pedro López
Affiliation:
Juan Barbolla Departamento de Electricidad y Electrónica.Universidad de Valladolid E-47011 Valladolid, Spain
Iván Santos
Affiliation:
Juan Barbolla Departamento de Electricidad y Electrónica.Universidad de Valladolid E-47011 Valladolid, Spain
María Aboy
Affiliation:
Juan Barbolla Departamento de Electricidad y Electrónica.Universidad de Valladolid E-47011 Valladolid, Spain
Get access

Abstract

We present an atomistic model that describes the evolution of ion induced damage ranging from individual defects to continuous amorphous layers. The elementary units used to reproduce the defective zones are Si interstitials, vacancies and the IV pair, which is a local distortion of the Si lattice without any excess or deficit of atoms. More complex defect structures can be formed as these elementary units cluster. The amorphous pockets are treated as agglomerates of IV pairs, whose recrystallization rate depends on the local density of these defects. The local excess or deficit of atoms in the amorphous regions experiences some rearrangement as recrystallization takes place. In sub-amorphizing implants amorphous pockets are disconnected and when they recombine, they leave behind the local excess of Si interstitials and vacancies. When a continuous amorphous layer initially extends to the surface, the excess or deficit atoms within the amorphous layer are swept towards the surface where they are annihilated and only the defects beyond the amorphous-crystalline interface remain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Olson, G.L. and Roth, J.A., Material Science Reports 3, 78 (1988).Google Scholar
2. Tai, M.Y. and Streetman, B.G., J. Appl. Phys. 50, 183 (1979).Google Scholar
3. Eaglesham, D.J., Stolk, P.A., Gossmann, H.J., Poate, J.M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
4. Pelaz, L., Jaraiz, M., Gilmer, G.H., Gossmann, H-J., Rafferty, C.S., Eaglesham, D.J., and Poate, J.M., Appl. Phys. Lett 70, 285 (1997).Google Scholar
5. Cristiano, F., Colombeau, B., and Claverie, A., Def. Diff. Forum 199, 183 (2000).Google Scholar
6. Robertson, L.S., Jones, K.S., Rubin, L.M., Jackson, J., J. Appl. Phys. 87, 2910 (2000).Google Scholar
7. Hobler, G. and Rafferty, C.S., Mat. Res. Symp.Proc., 123 (1999).Google Scholar
8. Lampin, E., Senez, V., Claverie, A., J. Appl. Phys. 85, 8137 (1999).Google Scholar
9. Avci, I., Law, M.E., Kuryliw, E., Saavedra, A.F., Jones, K.S., J. Appl. Phys. 95, 2452 (2004).Google Scholar
10. Hobler, G. and Otto, G., Materials Science in Semiconductor Processing. 6, 1 (2003).Google Scholar
11. Tang, M., Colombo, L., Zhu, J., and Rubia, T. Diaz de la, Phys. Rev. B 55, 4279 (1997).Google Scholar
12. Marqués, L.A., Pelaz, L., Hernandez, J., Barbolla, J., and Gilmer, G.H., Phys. Rev. B 64, 045214 (2001).Google Scholar
13. Caturla, M.-J., Rubia, T. D., Marqués, L.A., and Gilmer, G.H., Phys. Rev. B 54, 16683 (1996).Google Scholar
14. Marqués, L.A., Pelaz, L., Aboy, M., Enriquez, L., J. Barbolla. Phys. Rev. Lett. 91, 135504 (2003).Google Scholar
15. Jaraiz, M., Pelaz, L., Rubio, E., Barbolla, J., Gilmer, G.H., Eaglesham, D.J., Gossmann, H.J., and Poate, J.M., Mat. Res. Soc. Symp. Proc. 54, 532 (1998).Google Scholar
16. Masaki, Y., LeComber, P.G., and Fitzgerald, A.G., J. Appl. Phys. 74, 129 (1993).Google Scholar
17. Pelaz, L., Marqués, L.A., Gilmer, G.H., Jaraiz, M., Barbolla, J., Nucl. Instrum. Methods Phys. Res. B 180, 12 (2001).Google Scholar
18. Donnelly, S.E., Birtcher, R.C., Vishnyakov, V.M., Carter, G., Appl. Phys. Lett. 82, 1860 (2003).Google Scholar
19. Battaglia, A., Priolo, F., Rimini, E., and Ferla, G., Appl. Phys. Lett 56, 2622 (1990).Google Scholar
20. Campisano, S.U., Coffa, S., Raineri, V., Priolo, F., Rimini, E.. Nucl. Instr. Meth. B 80–81, 514 (1993).Google Scholar
21. Goldberg, R.D., Williams, J.S., and Elliman, R.G., Nucl. Instrum. Methods Phys. Res. B 106, 242 (1995).Google Scholar
22. Pelaz, L., Marques, L.A., Aboy, M., Barbolla, J., Gilmer, G.H., Appl. Phys. Lett. 82, 2038 (2003).Google Scholar
23. Rubia, T. Diaz de la and Gilmer, G.H., Phys. Rev. Lett. 74, 2507 (1995).Google Scholar
24. Sadana, D.K., Stratham, M., Washburn, J., Booker, G.R., J. Appl. Phys. 51, 5718 (1980).Google Scholar
25. Pelaz, L., Gilmer, G.H., Venezia, V.C., Gossmann, H.J., Jaraiz, M., Barbolla, J., Appl. Phys. Lett. 74, 2017 (1999).Google Scholar