Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:26:21.773Z Has data issue: false hasContentIssue false

Atomistic Calculations of Dopant Binding Energies in ZnGeP2

Published online by Cambridge University Press:  10 February 2011

Ravindra Pandey
Affiliation:
Michigan Technological University, Houghton, MI, [email protected]
Melvin C. Ohmer
Affiliation:
Air Force Research Laboratory, Wright Patterson AFB, OH, [email protected]
A. Costales
Affiliation:
Universidad de Oviedo, Oviedo, Spain, [email protected]
J. M. Recio
Affiliation:
Universidad de Oviedo, Oviedo, Spain, [email protected]
Get access

Abstract

Atomistic model has been applied to study various cation dopants, namely Cu, Ag, B, Al, Ga and In in ZnGeP2. The pairwise interatomic potential terms representing the interaction of dopants with the host lattice ions are derived using first principle methods. Defect calculations based on Mott-Littleton methodology predict small binding energies for Cu and Ag substituting Zn in the lattice which are in agreement with the available experimental data. The group III dopants (i.e. B, Al, Ga and In) at the Ge site are predicted to have large binding energies for a hole except B which shows a distinct behavior. This may be due to large mismatch in atomic sizes of B and Ge. At the Zn site, the calculated binding energies of the group III dopants place donor levels in the middle of the band gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schunemann, P. G., Budni, P. A., Knights, M. G., Pollok, T. M., Chicklis, E. P., and Marquardt, C. L., Advanced Solid State Lasers and compact Blue-Green Laser Technical Digest (Optical Society of America, Washington, DC, 1993).Google Scholar
2 Yu. Rud, V., Fiz. Techn. Poluprovodn, 28 633 (1994).Google Scholar
3 Rakowsky, M. H., Kuhn, W. K., Lauderdale, W. J., Halliburton, L. E., Edwards, G. J., Scripsick, M. P., Schunemann, P. G., Pollak, T. M., Ohmer, M. C. and Hopkins, F. K., Appl. Phys. Lett. 64, 1615 (1994).Google Scholar
4 Halliburton, L. E., Edwards, G. J., Scripsick, M. P., Rakowsky, M. H., Schunemann, P. G., and Pollak, T. M., Appl. Phys. Lett. 66, 2670 (1995).Google Scholar
5 Zapol, P., Pandey, R., Ohmer, M., and Gale, J. D., J. Appl. Phys. 79, 671 (1996).Google Scholar
6 . Averkieva, G. K., Grigoreva, V. S., Maltseva, I. A., Prochukan, V. D., Rud, Yu. V., Phys. Stat. Sol (a) 39, 453 (1977),Google Scholar
7 Voevodin, V. G., Gribenyukov, A. I., Morozov, A. and Morozov, V. S., Izve Vys. Ucheb. Zav., Fiz 2, 64, 1985.Google Scholar
8 Grigoreva, V. S., Prochukhan, V. D., Rud, Yu. V., Yakovenko, A. A., Phys. Stat. Sol. (a) 17, K69 (1973).Google Scholar
9 Physical Phenomena in Ternary Compounds and Devices by Rud, Yu. V. (in Russian), Machine Translation-NAIC-ID(RS)T-0699-94, Distribution limited, available from DTIC.Google Scholar
10 Harding, J. H. and Stoneham, A. M., J. Phys. C15, 4649 (1982).Google Scholar
11 Zapol, p., Pandey, R. and Gale, J. D., 1997, J. Condens. Matter, in press, 1997.Google Scholar
12 Dick, B. G. and Overhauser, A. W., Phys. Rev. 112, 90 (1958).Google Scholar
13 Francisco, E., Recio, J. M., Blanco, M. A., Pendas, A. Martin and Pueyo, L., Phys. Rev. B 51, 2703 (1995).Google Scholar
14 Gorden, R. G. and Kim, Y. S., J. Chem. Phys. 56, 3122 (1972).Google Scholar
15 Luana, V. and Pueyo, L., Phys. Rev. B 41, 3800 (1990).Google Scholar
16 Clementi, E. and Roetti, C., At. Nucl. Data Tables 14, 177 (1974).Google Scholar
17 Francisco, E., Recio, J. M., Blanco, M. A. and Pendas, A. Martin, Phys. Rev. B 51, 11289 (1995).Google Scholar
18 Pendas, A. Martin and Francisco, E., Phys. Rev. A43, 3384 (1991).Google Scholar
19 Gale, J. D., Phil. Mag. B73, 3 (1996); J. D. Gale, JCS Faraday Trans 93, 629 (1997).Google Scholar
20 A detailed comparison can be obtained from the authors : [email protected]Google Scholar
21 Lidiard, A. B. and Norgett, M. J. in Computational Solid State Physics, edited by Herman, F. (Plenum, New York, 1972), p. 385.Google Scholar
22 Catlow, C. R. A. and Mackrodt, W. C., Computer Simulations of Solids (Springer, Berlin, 1982).Google Scholar