Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:40:12.667Z Has data issue: false hasContentIssue false

Atomic-Scale Analysis of Strain Relaxation Mechanisms in Ultra-Thin Metallic Films

Published online by Cambridge University Press:  01 February 2011

M. Rauf Gungor
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, U.S.A.
Dimitrios Maroudas
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, U.S.A.
Get access

Abstract

A comprehensive computational analysis is presented of the atomistic mechanisms of strain relaxation over a wide range of applied biaxial tensile strain in free-standing Cu thin films. The analysis is based on large-scale isothermal-isostrain MD simulations using slab supercells with cylindrical voids normal to the film plane and extending throughout the film thickness. Our analysis has revealed various regimes in the film's mechanical response as the applied strain level increases. Following an elastic response at low strain (≶ 2%), plastic deformation occurs accompanied by emission of screw dislocations from the void surface and threading dislocations from the film surfaces, in parallel with generation of vacancies due to slip of jogged dislocations. At the lower strain range following the elastic-to-plastic deformation transition (⋚ 6%), void growth is the major strain relaxation mechanism, while at higher levels of applied strain (≥ 8%), a subsequent transition leads to a new plastic deformation regime where void growth plays a negligible role in the film strain relaxation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nix, W. D., Metal. Trans. A 20A, 2217 (1989).Google Scholar
2 Gleixner, R. J., Clemens, B. M., and Nix, W. D., J. Mater. Res. 12, 2081 (1997).Google Scholar
3 Thompson, C. V. and Lloyd, J. R., MRS Bulletin 18 (12), 19 (1993).Google Scholar
4 Hu, C.-K. and Harper, J. M. E., Mater. Chem. Phys. 52, 5 (1998).Google Scholar
5 Freund, L. B., Dynamic Fracture Mechanics (Cambridge University Press, Cambridge, 1998).Google Scholar
6 McClintock, F. A., J. Appl. Mech. 35, 363 (1968); J. R. Rice and D. M. Tracey, J. Mech. Phys. Solids 17, 201 (1969); A. Needleman, J. Appl. Mech. 39, 964 (1972); J. S. Langer and A. E. Lobkovsky, Phys. Rev. E 60, 6978 (1999).Google Scholar
7See, e.g., Gao, H., Huang, Y., and Nix, W. D., Naturwissenschaften 86, 507 (1999).Google Scholar
8 Abraham, F. F., Adv. Phys. 52, 727 (2003); V. Bulatov, F. F. Abraham, L. Kubin, B. Devincre, and S. Yip, Nature 391, 669 (1998); S. J. Zhou, D. L. Preston, P. S. Lomdahl, and D. M. Beazley, Science 279, 1525 (1998); E. T. Seppälä, J. Belak, and R. E. Rudd, Phys. Rev. B 69, 134101 (2004); J. Li, K. J. Van Vliet, T. Zhu, S. Yip, and S. Suresh, Nature 418, 307 (2002); E. T. Lilleodden, J. A. Zimmerman, S. M. Foiles, and W. D. Nix, J. Mech. Phys. Solids 51, 901 (2003).Google Scholar
9 Gungor, M. R., Maroudas, D., and Zhou, S. J., Appl. Phys. Lett. 77, 343 (2000); M. R. Gungor and D. Maroudas, Int. J. Fracture 109, 47 (2001); D. Maroudas and M. R. Gungor, Comp. Mater. Sci. 23, 242 (2002).Google Scholar
10 Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Oxford University Press, Oxford, 1990).Google Scholar
11 Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).Google Scholar
12See, e.g., Kraft, O. and Arzt, E., Acta Mater. 45, 15991611 (1997).Google Scholar
13 Hirth, J. P. and Lothe, J., Theory of Dislocations (Wiley, New York, 1982).Google Scholar