Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:44:03.618Z Has data issue: false hasContentIssue false

Atomic Transport by Ion Beam Mixing in the Radiation Enhanced Diffusion Region

Published online by Cambridge University Press:  21 February 2011

S. M. Jung
Affiliation:
Department of Physics, Yonsei University, Seoul 120-749, Korea.
G. S. Chang
Affiliation:
Department of Physics, Yonsei University, Seoul 120-749, Korea.
J. H. Joo
Affiliation:
Department of Physics, Yonsei University, Seoul 120-749, Korea.
J. J. Woo
Affiliation:
Department of Physics, Chonnam National University, Kwangju 500–757, Korea
K. S. Jang
Affiliation:
Korea Electric Power Corporation Research Center, Taejon 305–380, Korea
C. N. Whang
Affiliation:
Department of Physics, Yonsei University, Seoul 120-749, Korea.
Get access

Abstract

In order to study atomic transport in the radiation enhanced diffusion (RED) region, Pd/Co bilayers were intermixed by 80keV Ar+ in the temperature range from 90 K to 700 K. The critical temperature for the onset of RED was found to be ∼ 400 K, and the transported amount of Pd atoms was found to be always larger than that of Co in the RED region. This result cannot be explained by pre-existing models. Thus we have developed a comprehensive model for atomic transport in the RED region including size effect, damage controlled effect, and cohesive energy effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rehn, L. E. and Okamoto, P. R., Nucl. Instrum. Methods B39, 104 (1989).Google Scholar
2 Cheng, Y. T., Mater. Sci. Rept. 5, 45 (1990).Google Scholar
3 Auner, G. W., Cheng, Y. T., Alkais, M. H., and Padmanabhan, K. R., Appl. Phys. Lett. 58, 586 (1991), and Nucl. Instrum. Methods B59/60, 504 (1991).Google Scholar
4 Tao, K., Hewett, C. A., Lau, S. S., Bûchai, Ch. and Poker, D. B., Appl. Phys. Lett. 50, 1343 (1987).Google Scholar
5 Ding, F. R., Averback, R. S., and Hann, H., J. Appl. Phys. 64, 1785 (1988).Google Scholar
6 Chae, K. H., Choi, J. M., Jung, S. M., Joo, J. H., Kim, J. K., Kang, H. J. and Whang, C. N., Nucl. Instrum. Methods B88, 387 (1994).Google Scholar
7 Chae, K. H., Song, J. H., Jung, S. M., Jang, H. G., Woo, J. J., Jeong, K., and Whang, C. N., J. Appl. Phys. 73, 4292 (1993).Google Scholar
8 Miedema, A. R., Phil. Techn. Rev. 36, 217 (1976).Google Scholar
9 Colgan, E. G. and Mayer, J. W., Nucl. Instrum. Methods B17, 242 (1986).Google Scholar
10 Cheng, Y. T., Zhao, X. A., Workmann, T. W., Nicolet, M.-A., and Johnson, W. L., J. Appl. Phys. 60, 2615 (1986).Google Scholar
11 Chen, G. S., Farkas, D., and Rangaswamy, M., Mater. Soc. Symp. Proc. 128, 195 (1989).Google Scholar
12 Johnson, W. L., Cheng, Y. T., Van Rossum, M., and Nicolet, M.-A., Nucl. Instrum. methods B7/8, 657 (1985).Google Scholar
13 Sizmann, R., J. Nucl. Mater. 69/70, 386 (1978).Google Scholar
14 Philibert, J., Atom Movements, Diffusion and Mass Transport in Solids (Edition De Physique, Les Ulis, 1991), p.98.Google Scholar
15 Neumann, G. and Hirschwald, W., Phys. Status Solidi B55, 99 (1973).Google Scholar
16 Le Claire, A. D., J. Nucl. Mater. 69/70, 70 (1978).Google Scholar
17 Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50 1285 (1983).Google Scholar
18 Johnson, R. A. and Lam, N. Q., Phys. Rev. B13, 4364 (1976).Google Scholar
19 Wiedersich, H., Okamoto, P. R., and Lam, N. Q., J. Nucl. Mater. 83, 98 (1979).Google Scholar
20 Andersen, H. H., Appl. Phys. 18, 131 (1979)Google Scholar
21 Myers, S. M., Nucl. Instrum. Methods 168, 265 (1980)Google Scholar
22 Sigmund, P., Appl. Phys. Lett. 14, 114 (1969)Google Scholar