Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:44:57.977Z Has data issue: false hasContentIssue false

Atomic Structure of Ultrathin Iron Silicide Films on Si(111): Metastable Phases and a New Template Structure

Published online by Cambridge University Press:  11 February 2011

U. Starke
Affiliation:
Max-Planck-Institutfür Festkörperforschung, Stuttgart, Germany.
S. Walter
Affiliation:
Universität Erlangen-Nürnberg, Erlangen, Germany.
M. Krause
Affiliation:
Universität Erlangen-Nürnberg, Erlangen, Germany.
F. Blobner
Affiliation:
Universität Erlangen-Nürnberg, Erlangen, Germany.
R. Bandorf
Affiliation:
Universität Erlangen-Nürnberg, Erlangen, Germany.
W. Weiss
Affiliation:
Universität Erlangen-Nürnberg, Erlangen, Germany.
S. Müller
Affiliation:
Universität Erlangen-Nürnberg, Erlangen, Germany.
L. Hammer
Affiliation:
Universität Erlangen-Nürnberg, Erlangen, Germany.
K. Heinz
Affiliation:
Universität Erlangen-Nürnberg, Erlangen, Germany.
Get access

Abstract

The initial stages of iron silicide growth on Si(111) were investigated using LEED, AES and STM experiments together with DFT calculations. In 1:1 stoichiometry, a cubic FeSi develops showing a (1×1) surface periodicity which is stable up to 300°C. The epitaxial strain energy stabilizes this bulk-unstable B2 (CsCl-type) phase for up to 250 Å thickness. The surface is Si terminated, the interface coordination of the so-called B8 type. After annealing at ≈ 600°C, a (2×2)-FeSi2 phase of higher Si content is observed which possesses cubic crystal structure. It is stable below 10 monolayers (ML) initial Fe coverage and grows in an island-like morphology. In the initial growth stage, however, a c(8×4) phase forms that completely covers the surface at 1.5 ML Fe content and appears as potential template for further growth of homogeneous films. The interpretation of atomically resolved STM images suggests that the film contains three Si and two Fe layers in B2 structure with vacancies on Fe positions. The vacancy arrangement seems to be responsible for the c(8×4) periodicity displayed by the Si adatoms in T4-position.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hansen, M., Constitution of Binary Alloys (Mc Graw-Hill, New. York, 1958).Google Scholar
[2] Vasquez de Parga, A.L., de la Figuera, J., Ocal, C., Miranda, R., Europhys. Lett. 18, 595 (1992).Google Scholar
[3] Kafader, U., Wetzel, P., Pirri, C. and Gewinner, G., Appl. Phys. Lett. 63, 2360 (1993).Google Scholar
[4] Michel, E.G., Appl. Surf. Sci. 117/118 294 (1997).Google Scholar
[5] Monolayers are defined as one atom per Si(111) unit cell.Google Scholar
[6] Heinz, K., Rep. Prog. Phys. 58, 637 (1995).Google Scholar
[7] Kresse, G and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).Google Scholar
[8] Walter, S., Blobner, F., Krause, M., Müller, S., Heinz, K. and Starke, U., J. Phys. C, submitted.Google Scholar
[9] Weiβ, W., Kutschera, M., Starke, U., Mozzafari, M., Resthöft, K., Köhler, U. and Heinz, K., Surface Sci. 377–379, 861 (1997).Google Scholar
[10] Starke, U., Weiss, W., Kutschera, M., Bandorf, R. and Heinz, K., J. Appl. Phys. 91, 6154 (2002).Google Scholar
[11] von Känel, H., Mäder, K. A., Müller, E., Onda, N. and Sirringhaus, H., Phys. Rev. B 45, 13807 (1992).Google Scholar
[12] Walter, S., Bandorf, R., Weiss, W., Starke, U., Heinz, K., Straβ, M., Bockstedte, M. and Pankratov, O., Phys. Rev. B, 67, 085413 (2003).Google Scholar
[13] Krause, M., Blobner, F., Hammer, L., Heinz, K. and Starke, U., Phys. Rev. B, submitted.Google Scholar