Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:10:16.461Z Has data issue: false hasContentIssue false

The atomic scale removal mechanism during chemomechanical polishing of Silicon: An atomic force microscopy study

Published online by Cambridge University Press:  01 February 2011

Futoshi Katsuki
Affiliation:
Corporate Research and Development Laboratories, Sumitomo Metal Industries Limited, 1–8 Fuso-cho, Amagasaki 660–0891, Japan
Junji Watanabe
Affiliation:
Department of Mechanical Engineering and Materials Science, Kumamoto University, 2–39–1 Kurokami, Kumamoto 860–8555, Japan
Get access

Abstract

The pressure dependence of the microwear of an oxidized Si surface under aqueous electrolyte solutions has been investigated using an atomic force microscope with a single crystal Si tip. The removal ratio of Si tip to SiO2 surface is found to be highly sensitive to the contact pressure. We present a microscopic removal mechanism which is determined by an interplay of the diffusion of H2O in Si and SiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mendel, E., Solid State Technol. 10, 27 (1967).Google Scholar
2. Patrick, W.J., Guthrie, W.L., Standley, C.L. and Schiable, P.M., J. Electrochem. Soc. 138, 1778 (1991).Google Scholar
3. Fusstetter, H., Schnegg, A., Graf, D., Kirschner, H., Brohl, M. and Wagner, P., Mater. Res. Soc. Symp. Proc. 386, 97 (1995).Google Scholar
4. Pietsch, G.J., Higashi, G.S. and Chabal, Y.J., Appl. Phys. Lett. 64, 3115 (1994).Google Scholar
5. Karaki, T., Miyake, S. and Watanabe, J., Bull. Japan Soc. of Prec. Eng. 12, 207 (1978).Google Scholar
6. kaneko, R., Miyamoto, T. and Hamada, E., “Microwear”, Handbook of Micro/Nano Tribology, ed. Bhushan, B. (CRC Press, 1995) pp.183221.Google Scholar
7. Manne, S., Butt, H.H., Gould, S.A.C. and Hansma, P.K., Appl. Phys. Lett. 56, 1758 (1990).Google Scholar
8. Katsuki, F., Kamei, K., Saguchi, A., Takahashi, W. and Watanabe., J., J. Electrochem. Soc. 147, 2328 (2000).Google Scholar
9. Katsuki, F., Saguchi, A., Takahashi, W. and Watanabe, J., Jpn. J. Appl. Phys. 41, 4919 (2002).Google Scholar
10. Cook, L. M., J. Non-Cryst. Solids 120, 152 (1990).Google Scholar
11. Graf, D., Grundner, M. and Schulz, R., J. Vac. Sci. & Technol. A7, 807(1989).Google Scholar
12. Nogami, M. and Tomozawa, M., J. Am. Ceram. Soc. 67, 151 (1984).Google Scholar
13. Trogolo, J.A. and Rajan, K.: J. Mater. Sci. 29, 4454 (1994).Google Scholar