Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:42:15.208Z Has data issue: false hasContentIssue false

Atomic Scale Control of Epitaxial Growth and Interface in Oxide Thin Films for Advanced Oxide Lattice Engineering

Published online by Cambridge University Press:  15 February 2011

M. Yoshimoto
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226, Japan
T. Maeda
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226, Japan
T. Ohnishi
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226, Japan
G. H. Lee
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226, Japan
H. Koinuma
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226, Japan
Get access

Abstract

Advanced thin film technology based on laser MBE has enabled us to control the molecular layer-by-layer epitaxial growth and interface structure of oxide thin films in an atomic scale. Molecular layer epitaxy of oxide thin film growth was verified from in situ monitoring of intensity oscillation in reflection high energy electron diffraction (RHEED). Advanced oxide thin film technology was applied to form oxide superlattices for quantum functional oxides and to achieve lattice-matched heteroepitaxy in oxide films on silicon substrate for all epitaxial oxide/silicon hybrid devices. The key factors to develop oxide lattice engineering are discussed with respect to not only in situ monitoring of growth process using RHEED but also atomic regulation of the substrate surface by atomic force microscopy and ion scattering spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bednorz, J. G. and Muller, K. A., Z.Phys. B 64, p. 189 (1986).Google Scholar
2. Asamitsu, A., Moritomo, Y., Tomioka, Y., Arima, T. and Tokura, Y., Nature 373, p. 407 (1995).Google Scholar
3. Koinuma, H. and Yoshimoto, M., Appl. Surf. Sci. 75, p. 308 (1994).Google Scholar
4. Koinuma, H., Nagata, H., Tsukahara, T., Gonda, S. and Yoshimoto, M., Appl.Phys. Lett. 58, p. 2027 (1991).Google Scholar
5. Koinuma, H., Yoshimoto, M. and Nagata, H., “Chemical Processing of Advanced Materials”, ed.by Henchi, L. L. and West, J. K. (John Wiley), Chapt. 29, (1992).Google Scholar
6. Yoshimoto, M., Nagata, H., Tsukahara, T. and Koinuma, H., Jpn. J. Appl. Phys. 29, p. L1199 (1990).Google Scholar
7. Yoshimoto, M., Ohkubo, H., Kanda, N., Koinuma, H., Horiguchi, K., Kumagai, M. and Hirai, K., Appl.Phys.Lett 61, p. 2659 (1992).Google Scholar
8. Koinuma, H., Yoshimoto, M., Nagata, H. and Tsukahara, T., Solid State Commun. 80, p. 9 (1991).Google Scholar
9. Aono, M., Oshima, C., Zaima, S., Otani, S. and Ishizawa, Y., Jpn. J. Appl. Phys. 20, p. L829(1981).Google Scholar
10. Locquet, J. P., Catana, A., Machler, E., Gerber, C., Bednorz, J. G., Appl. Phys.Lett. 64, p. 372 (1994).Google Scholar
11. McKee, R.A., Walker, F. J., Specht, E. D., Jellison, G. E. and Boatner, L. A., Phys. Rev. Lett. 72, p. 2742 (1994).Google Scholar
12. Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R. and Miyamoto, A., Appl.Phys.Lett. 67, p. 2615 (1995).Google Scholar
13. Yoshimoto, M., Maeda, T., Shimozono, K., Koinuma, H., Shinohara, M., Ishiyama, O. and Ohtani, F., Appl.Phys.Lett. 25, p. 3197(1994).Google Scholar
14. Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M. and Koinuma, H., Science 266, p. 1540 (1994).Google Scholar
15. Yoshimoto, M., Ohkubo, H., Kanda, N. and Koinuma, H., Jpn. J. Appl. Phys. 31, p.3664 (1992).Google Scholar
16. Takano, M., Azuma, M., Hiroi, Z. and Bando, Y., Physica C 176, p. 549 (1991).Google Scholar
17. Yoshimoto, M., Nagata, H., Gong, J. P., Ohkubo, H. and Koinuma, H., Physica C 185, p. 2085 (1991).Google Scholar
18. Yoshimoto, M., Nagata, H., Gonda, S., Gong, J. P., Ohkubo, H. and Koinuma, H., Physica C 190, p. 43 (1991).Google Scholar
19. Gong, J. P., Yoshimoto, M., Nagata, H., Gonda, S. and Koinuma, H., “Advances in Superconductivity IV”, ed. by Hayakawa, H. et al. ( Springer-Verlag, Tokyo), p.863 (1991).Google Scholar
20. Yoshimoto, M., Maeda, T., Gonda, S., Shimozono, K., Koinuma, H., Ishiyama, O. and Shinohara, M., Mat. Res. Soc. Symp. Proc. 341, p. 133 (1994).Google Scholar
21. Maeda, T., Yoshimoto, M., Shimozono, K. and Koinuma, H.. Physica C 247, p. 142 (1995).Google Scholar
22. Inoue, T., Yamamoto, Y., Koyama, S., Suzuki, S. and Ueda, Y.,Appl. Phys. Lett. 56, p. 1332 (1990).Google Scholar
23. Yaegashi, S., Kurihara, T., Hoshi, H. and Segawa, H., Jpn. J. Appl. Phys. 33, p. 270 (1990).Google Scholar
24. Chikyow, T., Tye, L., El-Masry, N. A. and Bedair, S. M., Appl. Phys. Lett. 65, p. 1030 (1994).Google Scholar
25. Yoshimoto, M., Shimozono, K., Maeda, T., Ohnishi, T., Kumagai, M., Chikyow, T., Ishiyama, O., Shinohara, M. and Koinuma, H., Jpn. J. Appl. Phys. 34, p. L688 (1995).Google Scholar