Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:42:12.695Z Has data issue: false hasContentIssue false

Atomic Scale Characterization of Oxygen Vacancy Segregation at SrTiO3 Grain Boundaries

Published online by Cambridge University Press:  21 March 2011

R.F. Klie
Affiliation:
Department of Physics (M/C 273), University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607-7059., USA
N. D. Browning
Affiliation:
Department of Physics (M/C 273), University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607-7059., USA
Get access

Abstract

We have examined the structure, composition and bonding at an un-doped 58° [001] tilt grain-boundary in SrTiO3 in order to investigate the control that the grain boundary exerts over the bulk properties. Room temperature and in-situ heating experiments show that there is a segregation of oxygen vacancies to the grain boundary that is increased at elevated temperatures and is independent of the cation arrangement. These measurements indicate that the widely observed electronic properties of grain boundaries may be due to an excess of mobile oxygen vacancies that cause a highly doped n-type region in the close proximity ( ≍ 1 unit cell) to the boundary. These results are shown to be consistent with both theoretical models and lower resolution chemical analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Huang, K., Tichy, R.S., and Goodenough, J.B., J. Am. Ceram. Soc. 81, 2565–75 (1998)Google Scholar
[2] Mazanec, T.J., Solid State Ionics, 70/71, 1119 (1994)Google Scholar
[3] Chiang, Y.M., Birnie, D., and Kingery, W.D., Physical Ceramics,MIT Series (1997)Google Scholar
[4] McGibbon, M.M., Browning, N.D., Chrisholm, M.F., McGibbon, A.J., Pennycook, S.J., Ravikumar, V., and Dravid, V.P., Science 266, 102 (1994).Google Scholar
[5] Browning, N. D. and Pennycook, S. J., J. Phys D 29, 1779 (1996).Google Scholar
[6] McGibbon, M. M., Browning, N. D., McGibbon, A. J., Chisholm, M. F., and Pennycook, S. J., Philosophical Magazine A 73, 625 (1996)Google Scholar
[7] Duscher, G., Browning, N. D. and Pennycook, S. J., Physica Status Solidi 166, 327 (1998).Google Scholar
[8] Browning, N. D., Buban, J. P., Moltaji, H. O., Duscher, G., Pennycook, S. J., Rodrigues, R. P., Johnson, K. and Dravid, V. P., Applied Physics Letters 74, 2638 (1999).Google Scholar
[9] Kruidhof, H., Bouwmeester, H.J.M., Doown, R.H.E. v., and Burggraaf, A.J., Solid State Ionics, 63–65, 816822 (1992)Google Scholar
[10] James, E.M. and Browning, N.D., Ultramicroscopy 78 125 (1999)Google Scholar
[11] James, E.M., Browning, N.D., Nicholls, A.W., Kawasaki, M., Xin, Y., and Stemmer, S., J. Electr. Micr., 47(6), 561571 (1998)Google Scholar
[12] Nellist, P.D. and Pennycook, S.J., Ultramicroscopy 78 111 (1999)Google Scholar
[13] Crowley, J.M., J. Electron. Microsc. Tech., 3, 2544 (1986)Google Scholar
[14] Jesson, D.E., and Pennycook, S.J., Proc. R. Soc. Lond. A, 449, 273293 (1995)Google Scholar
[15] Egerton, R.F., Electron Energy Loss Spectroscopy in the electron microscope, Plenum, New York (1986)Google Scholar
[16] Fertig, J. and Rose, H., Optik, 59, 407 (1981)Google Scholar
[17] Browning, N.D., Chrisholm, M.F., and Pennycook, S.J., Nature, 366, 143 (1993)Google Scholar
[18] Wang, Z.L. and Kang, Z.C., Functional and smart materials, Plenum Press (1998)Google Scholar
[19] Klie, R.F., Ito, Y., Stemmer, S., Browning, N.D., Ultramicroscopy (in print)Google Scholar
[20] Chiang, Y.-M. and Takagi, T., J. Amer. Ceram. Soc. 73 3278 (1990)Google Scholar
[21] Kim, M., Duscher, G., Browning, N.D., Pennycook, S.J., Sohlberg, K., Pantelides, S.T., submitted Phys. Rev. Lett. (2000)Google Scholar
[22] Kliewer, K.L. and Koehler, J.S., Phys. Rev. Lett 140, A1226 (1965)Google Scholar
[23] Klie, R.F. and Browning, N.D., Applied Phys. Let., (2000)Google Scholar